
 

 

 
Einstein’s False Interpretation Of The Velocity Addition Law 

By Harry H. Ricker III  email:kc3mx@yahoo.com 

 
1.0 Introduction 

 

One of the fundamental discoveries of Einstein’s special relativity that was definitely not 

borrowed from Lorentz, Larmor, or Poincare is the famous velocity addition law. This 

law shows that the velocities measured in two relatively moving reference frames do not 

add linearly, but in a nonlinear manner. This paper shows that the velocity addition law is 

based on an incorrect interpretation of Lorentz transformation equations and that a correct 

interpretation of the mathematics of Lorentz transforms upholds the Galilean 

transformation law for velocities.  

 

Einstein’s special theory of relativity is based on two postulates. The first one, the 

principle of relativity, states that the laws of physics are of the same form when 

determined relative to one inertial system as when determined relative to any other. The 

second postulate states that the numerical constant in the light speed equation is the same 

in all inertial systems. When we consider the Galilean transformation, which implies that 

velocities defined in two different reference frames add linearly, we find that the principle 

of relativity does not apply. This is a curious contradiction. If the Galilean transformation 

is a valid law of physics, then why doesn’t it transform in the same form as other laws 

that are subject to the relativity postulate? 

 

The answer is that special relativity views the velocity addition law as unique result of the 

new concept of space-time physics that sets it apart from the old physics, which is based 

on the Galilean law. In this paper, it will be demonstrated that a reinterpretation of the 

Lorentz transformations means that the Galilean velocity law can be retained in the realm 

of relativistic physics rather than dispensed with. This preserves the principle that the 

laws of physics retain their form in relatively moving inertial reference systems. 

 

2.0 Galilean and Relativistic Transformation Laws Of Velocities 

 

Suppose we are given two relatively moving reference frames where the origin of S’ 

moves with the velocity v along the x axis of S. Suppose we measure the velocity of an 

object relative to the S’ frame of coordinates as having the velocity w. The according to 

the Galilean velocity addition law, the velocity of the same object relative to the S frame 

of reference is V=v+w. There is also a velocity subtraction law, which gives the velocity 

of an object relative to the moving coordinate system S’ if the velocity relative to the 

system S is known. The velocity relative to S’ is w=V-v.  

 

Special relativity claims that these laws are invalid for velocities where the ratio v/c is not 



 

 

close to zero. In 1905, Einstein obtained the following velocity addition law: V= 

v+w/(1+vw/c2). He deduced further “that the velocity of light c cannot be altered by 

composition with a velocity less than that of light . For in this case we obtain: 

V=c+w/(1+w/c)=c.” 

3.0 Proof That Galilean Addition Law Is Valid In General 

 

This section presents the proof that the Galilean velocity addition law is generally valid 

for  all ratios of v/c up to and including unity, and that the law discovered by Einstein is a 

special case. The first step of the proof is the correct evaluation of the Lorentz 

transformation equations. 

 

3.1 Evaluation Of Lorentz Transformation Equations 

 

The mathematical method used here is to first solve the system of Lorentz and inverse 

Lorentz equations for space and time simultaneously using a specified condition of 

evaluation. Here the term evaluation is used in the same sense as it is used when a 

polynomial equation is solved for its roots by setting the equation to equal zero and 

solving for the indeterminates. The procedure used here is similar. A selected variable is 

set to zero, and the resulting solutions are obtained. Solutions are obtained by setting one 

of the following four variables equal to zero, and then solving for the remaining three. 

The following variables are set equal to zero and the resulting solutions obtained by 

evaluation: x=x’=t=t’=0, each taken in turn. 

 

The Lorentz transformation equations in a simplified form are assumed as follows:  

x’=β(x-vt)     t’=β(t-vx/c2)            x=β(x’+vt’)     t=β(t’+vx/c2)           β=(1-v2/c2)-1/2 

Here there are four equations  which express the simultaneous solutions for the 

transformation of coordinates. These equations are defined in the usual way in terms of 

two relatively moving reference frames S and S’.  Where the origin of frame S’ is in 

motion with velocity v in the positive x direction of S.  

 

Notice that β is greater than unity when v is greater than zero, and that β-1 is less than 

unity when v is greater than zero. An equation of the form t’=βt results in a dilation of the 

variable t’ with respect to t because t’ is greater than t The equation t=β-1t’ results in a 

contraction of the variable t with respect to t’ because t is less than t’. The definition of β 

implies that it is always equal to or greater than unity, and can never be less than unity. 

 

The coordinate frames S and S’ are assumed to be orthogonal coordinate systems with the 

requirement that time is defined such that t=t’=0 occurs when the origins coincide; i.e. 

x=x’=y=y’=z=z’=0 at t=t’=0. The axes for the x, y, and z directions are assumed to be 

parallel, and the y and z coordinates are assumed to be identical and coincide when the 

origins coincide at t=t’=0. The purpose of the solutions is to determine the relations 

governing the transformation of the x and t coordinates according to the Lorentz 

transform equations. 

 

3.2 Results for x=0  (Specification of an evaluation at the same place in S) 



 

 

 

To consider the role of evaluation in space, we determine the simultaneous solution of the 

four equations when we specify the condition that x=0. The results are as follows: 

(1)        x’=β(x-vt)=-βvt 

(2)        t’=β(t-vx/c2)=βt 

(3)        x=β(x’+vt’)=0 , Therefore x’=-vt’ 

(4)        t=β(t’+vx’/c2)=βt’(1-v2/c2)=β-1t’ 

 

Notice that equation 4 is the inverse of equation 2, so they are the same solution. 

Equation 4 is solved by substitution with the result from equation 3. Therefore, from 

equations 2 and 4 we have the following solution for the condition x=0: t’=βt. The 

solutions for equations 1 and 3 give the results x’=-βvt=-vt’, from which we conclude that  

t’=βt. A result which is the same as obtained from equation 2 which is the primary result 

for the condition x=0. 

 

3.3 Results for x’=0 (Specification of an evaluation at the same place in S‘) 

 

To consider the role of evaluation in space, we determine the simultaneous solution of the 

four equations when we specify the condition that x’=0. The results are obtained as 

follows: 

(5)        x’=β(x-vt)=0, Hence x=vt 

(6)        t’=β(t-vx/c2)=βt(1-v2/c2)=β-1t 

(7)        x=β(x’+vt’)=βvt’ 

(8)        t=β(t’+vx’/c2)=βt’. 

 

Notice that equation 6 is the inverse of equation 8, so they are the same solution. 

Equation 6 is solved by substitution with the result from equation 5. Therefore, from 

equations 6 and 8 we have the following solution for the condition x’=0:  t=βt’. The 

solutions for equations 5 and 7 give the results x=vt =βvt’, from which we conclude that 

t=βt’. A result which is the same as obtained from equation 8 which is the primary result 

for the condition x’=0. 

 

3.4 Results for t=0 (Specification of an evaluation at the same time in S) 

 

To complete the  analysis of evaluation, we now consider the role of evaluation in time. 

We determine the simultaneous solution of the four equations when we specify the 

condition that t=0. The results are as follows: 

(9)        x’=β(x-vt)=βx 

(10)      t’=β(t-vx/c2)= -βvx/c2 

(11)      x=β(x’+vt’)=βx’(1-v2/c2)=β-1x’ 

(12)      t=β(t’+vx’/c2)=0, therefore t’=-vx’/c2. 

 

Notice that equation 11 is the inverse of equation 9, so they are the same solution. 

Equation 11 is solved by substitution with the result from equation 12. From equations 9 

and 11, we have the following solution for the condition that t=0: x’=βx. The solutions 



 

 

for equations 10 and 12 give the results t’=-βvx/c2=-vx’/c2 from which we conclude that 

x’=βx. A result which is the same as obtained from equation 9 which is the primary result 

for the condition t=0.  

 

3.5 Results for t’=0 (Specification of an evaluation at the same time in S‘) 

 

To consider the role of evaluation with the opposite condition, we determine the 

simultaneous solution of the four equations when we specify the condition that t’=0. The 

results are as follows: 

(13)      x’=β(x-vt)=βx(1-v2/c2)=β-1x 

(14)      t’=β(t-vx/c2)=0, therefore t= vx/c2. 

(15)      x=β(x’+vt’)=βx’ 

(16)      t=β(t’+vx’/c2)= βvx’/c2. 

 

Notice that equation 13 is the inverse of equation 15, so they are the same solution. 

Equation 13 is solved by substitution with the result from equation 14. From equations 13 

and 15 we have the following solution for the condition that t’=0:  x=βx’. The solutions 

for equations 14 and 16 give the results t=βvx’/c2=vx/c2 from which we conclude that  

x=βx’. A result which is the same as obtained from equation 15 which is the primary 

result for the condition t’=0. 

 

3.6 The Equations Define The Measurement Scale Change Laws 

 

The most obvious and clearly fruitful interpretation is that the equations resulting from 

the process of evaluation give the basis and coordinate transformation laws between the 

reference frames S and S’. This interpretation is different from the traditional 

interpretation given to the evaluation equations in Einstein’s theory, where the solutions 

are interpreted as real changes in the physical state of space and time between reference 

frames. This interpretation follows from the assumption in special relativity that the 

measurement units are the same in frames S and S’. The new interpretation views the 

transformation equations as measurement basis and coordinate scale changes between 

reference frames. Hence, the transformation of the units of time measurement, the time 

scale, for time in S into the units of time measure in S’ is given by equation 2. The 

transformation from S’ into S is given by the inverse of equation 2 as in equation 4. These 

are bijective transformations that are one-to-one and onto between the reference frames. 

Since the transformations of Einstein relativity are not bijective, paradoxes, 

inconsistencies, and contradictions are eliminated. 

 

The transformation of the units of the length measurement scale for distance in S into the 

distance scale in S’ is given by equation 9. The transformation of the units of the length 

measurement scale for distance from S’ into S is given by the inverse of equation 9 as in 

equation 11. These are bijective transformations that are one-to-one and onto between the 

reference frames. Notice that this interpretation is nicely confirmed by the equations for 

the motion of the origin of S as viewed from S’, equations 1 and 3. Similarly, the 

synchronization lag equations 10 and 12 are consistent with the scale change 



 

 

interpretation.  

 

3.7 The Scale Change Laws Transform Velocity Invariantly 

 

This section proves the surprising result that application of the measurement scale change 

interpretation leads to the conclusion that velocity is transformed invariantly between 

reference frames S and S’. This new approach requires some preparation. Consider the 

result of the scale change laws. In frame S we measure time and space in terms of units of 

time and distance measure so that the law x=ct applies. This means that distance and time 

measurement scales are defined in terms of the light velocity c.  

 

Consider the result of the scale change laws.  Equation 9 defines the distance scale in S’ 

in terms of distance measure in S as x’=βx, and equation 2 defines time in S’ in terms of 

time in S as t’=βt. The light velocity law transforms as  βx=cβt , which is the same as the 

law in frame S after dividing both sides by the factor β. Hence the Lorentz 

transformations leave the coordinate measure of light velocity invariant. This is not the 

same as in Einstein’s relativity. In Einstein’s relativity, the distances x=ct and x’=ct’ are 

equal; i.e. x=x’, because the time and distance measurement scales in S and S’ are the 

same. 

 

 

3.8 The Scale Change Laws Preserve The Galilean Transformations 

 

Here the fact that the Galilean transformations are preserved by the Lorentz 

transformations is proved. The proof relies upon converting the Lorentz transforms and 

the evaluation solutions to differential form. This is easily performed by replacing x with 

dx, x’ with dx’, t with dt, and t’ with dt’. The Lorentz transform becomes:  dx’=β(dx-vdt). 

A velocity defined relative to the frame S’ is defined as: Ux’=dx’/dt’. Here Ux’ means the 

component of velocity defined in S’ which is parallel to the direction of the x’ axis of the 

S’ reference frame. A velocity defined relative to the frame S is defined as Ux=dx/dt, 

where this is the velocity component parallel to the x axis of S. Here the velocity addition 

law is proved by showing that a velocity Ux’ defined in S’ is given by: Ux=Ux‘+v , where 

v is the velocity of the origin of S’ relative to S. 

 

The proof is as follows. Given dx’=β(dx-vdt), substitute dx’=Ux’dt’, and obtain, 

Ux’dt’=Ux’βdt=β(dx-vdt).  Divide both sides by β : Ux’dt=dx-vdt.  Rearrange to obtain the 

result that: (Ux’+v)dt=dx, which upon dividing by dt gives: Ux=Ux’+v. Hence the velocity 

addition law holds. The opposite result, the subtraction law, is obtained as follows. Here 

we are given a velocity defined relative to frame S as Ux. We require the velocity relative 

to S’; i.e. Ux’=Ux-v. 

 

The proof is as follows. Given dx’=β(dx-vdt), substitute dx=Uxdt to obtain: dx’=β(Uxdt-

vdt)=(Ux-v)βdt. Substitute dt’=βdt and divide by dt’ to obtain the following: dx’/dt’=Ux-

v=Ux’, which is the required transformation law. Hence we see that the velocity 

subtraction part of the Galilean transformation law is preserved.  



 

 

 

The significance of this result is that in Einstein relativity, the velocity addition law does 

not hold in the same form in frames S and S’. But here in this new theory, it is clear that 

the velocity addition law is the same as the Galilean transform. So the laws of mechanics 

retain the same form in the new theory but not in Einstein’s theory. 

4.0 Conclusion 

 

This last point explains the contradiction pointed out in the introduction. In Einstein’s 

version of relativity, the principle of relativity does not apply to the law of velocity 

addition because he assumed that the units of length and time measure are the same for all 

relatively moving reference frames. The velocity addition law which he gives is therefore 

only valid for the special case when the units of measure are the same for frames S and 

S’.  But Einstein’s theory has the undesirable side effect that there arise paradoxes and 

contradictions. In the theory given here, the Galilean transformation law retains its form 

in accordance with the principle of relativity which Einstein‘s theory violates.  

Additionally, in this theory there are no paradoxes and contradictions, as in Einstein’s 

theory. They are avoided because of the different interpretation of the symbols used in the 

Lorentz transformation equations. This interpretation preserves the form of the Galilean 

transformation law, but like the light constancy law there is a different interpretation. In 

the theory given here, the units of measure are not the same in frame S’ as in frame S and 

because of this, there is no contradiction with Einstein’s conclusion that c is a limiting 

velocity.  

 

 

 


