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Abstract  

 

In the present paper we solve the relativistic quantum hydrodynamic fundamental 

equations in the simplest case for free and bound photons. We obtain as solution 

spherical harmonics and spherical Bessel functions. We put the density distribution of 

free photons into the density distribution of bound photons and derive thereby the to-

tal energy equation for free and bound photons. For a single bound photon we calcu-

late the Casimir energy using the Euler-MacLaurin sum formula. The resulting total 

energy of a single bound photon has two different forces, centrifugal and Casimir 

forces keeping each other in balance. The fact that the total energy equation can be 

split into two independent energy equations is interpreted as the effect that the single 

bound photon is a binding state of a particle and its antiparticle. 

   

Key words: Fundamental equations of relativistic quantum hydrodynamics, free and 

bound photons, Casimir energy, binding state of a particle and its antiparticle. 
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1.  Introduction 

 

Although nearly a century has passed since Madelung [1] and de Broglie [2] 

developed the hydrodynamic formulation of quantum mechanics, no attempt has been 

made in the meantime to systematically solve the quantum hydrodynamic 

fundamental equations for each known quantum physical problem. – An important 

exception in this context is the pioneering work of H. E. Wilhelm [3] who solved the 

nonrelativistic, quantum hydrodynamic fundamental equations 1. for a particle in a 

box, 2. for the harmonic oscillator, 3. for the hydrogen atom and 4. for the free 

motion of a particle. But he did not succeed to clearly identify the quantum potential 

occurring in quantum hydrodynamic picture [4] with the effect of any physical object 

– with "hidden variables" –, because, in our opinion, he started from a nonrelativistic, 

hydrodynamic, fundamental equation equivalent to the Schrödinger equation and he 

did not use the Klein-Gordon or the Dirac equation for the relativistic hydrodynamic 

formulation. 

 

In the present paper, we want to start with the systematic solution of the relativistic 

quantum hydrodynamic fundamental equations and solve them in the simplest case 

for free and bound photons. For this purpose, we postulate in Section 2 the relativistic 

quantum hydrodynamic fundamental equations equivalent to the Dirac equation and 

solve them in Section 3 for bound and in Section 4 for free photons. In Section 5, the 

total energy equation for free and bound photons is derived and then in Section 6, the 

Casimir energy of a single bound photon is calculated. In Section 7, we calculate the 

total energy of a single bound photon. Section 8 is provided for summary and 

conclusions.  
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2.  The relativistic quantum hydrodynamics  

 

As fundamental equations of relativistic quantum hydrodynamics (RQH) we  

postulate the hydrodynamic formulation of the Dirac equation [5]:    

 

 ∂ (ρ (E – eΦ)/c2)/∂ t + ∇ .(ρ (p − (e/c) A)) = 0,     (1) 

(E – eΦ)2 = m0
2 c4 + (p  − (e/c) A)2 c2 − eћc σ.B − ћ2c2 ρ−1/2�ρ 1/2,   (2) 

0∫    (p − (e/c) A) . dr  =  2π ћ m,        m  =  0, ±1, ±2,…    (3) 

 

where are 

c    the constant vacuum speed of light,  

ћ   the reduced Planck constant, 

e   the elementary charge, 

σ    the 2x2 Pauli matrices, 

m0  the rest mass, 

p    the particle momentum, 

ρ   the probability density, 

E    the energy,   

Φ, A   the electromagnetic field quantities, 

B = ∇ x A . 

 

Eq. (1) is the equation of continuity of the RQH, Eq. (2) the equation of motion, and 

Eq. (3) a quantization rule for the angular momentum going back to Bohr-

Sommerfeld-Wilson. 

 

Since the nonrelativistic approximation gives 

 

m0 c2 (1 +(( p − (e/c)A) 2 − e(ћ/c) σ.B − ћ2ρ−1/2�ρ 1/2)/m0
2 c2) 1 / 2   (4) 

≈ m0 c2 + ((p − (e/c)A)2 − e(ћ/c) σ.B − ћ2ρ−1/2�ρ 1/2)/2 m0 ,   
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we obtain in place of the equation of motion (2) 

 

E = m0 c2 + eΦ + ((p − (e/c) A)2 − e(ћ/c) σ.B − ћ2ρ−1/2�ρ 1/2)/2 m0 ,  (5) 

 

where are 

m0 c2    the rest energy, 

eΦ     the potential energy,  

(p − (e/c) A)2/2 m0   the kinetic energy,  

− e(ћ/c) σ.B/2 m0 the spin energy, 

− ћ2ρ−1/2�ρ 1/2/2 m0   the so-called quantum potential [4]. 

 

Eq. (5) is the equation of motion for the hydrodynamic formulation of the Pauli equa-

tion [6]. 

 

 

3.  Solution for bound photons 

 

We start now with the systematic solution of the relativistic quantum hydrodynamic 

fundamental equations (1)-(3) and solve them first for bound photons. In this simplest 

case (Φ = 0, A = 0, B = 0), the fundamental equations (1)-(3) can be reduced to the 

equations 

 

 ∂ (ρ (E /c2)/∂ t + ∇ .(ρ p) = 0,       (6) 

E2 = m0
2 c4 + p2 c2 − ћ2c2 ρ−1/2� ρ 1/2      (7) 

0∫    p . dr  =  2π ћ m,        m  =  0, ±1, ±2,…      (8) 

 

The equation of motion (7) corresponds to the hydrodynamic formulation of the 

Klein-Gordon equation and provides therefore only such solutions that are equivalent 

to the solutions of the Klein-Gordon equation. 
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Since in this study we are interested only in stationary solutions and the probability 

density  ρ  must fulfill the boundary conditions  ρ (r1) = 0  and  ρ (r2) = 0 , the 

equation of continuity (6) gives 

 

∇ .(ρ p) = 0,  pr (r) = 0 .        (9) 

 

Since, furthermore, the particle momentum can only flow in closed lines and because 

of the azimuthal symmetry of the system, the momentum field in polar coordinates is 

independent of the angle ϕ: 

   

   p = (ћ / (r sin(δ))eϕ m  m  =  0, ±1, ±2,…              (10) 

 

Eq. (10) is in accordance with the quantization rule (8): 

 

 ∫    p . dr = 0∫   (ћ m / (r sin(δ))eϕ dr = ћ m  ∫   dϕ  =  2π ћ m .                         (11) 

 

Substituting Eq. (10) into the equation of motion (7) gives 

 

 E2 = m0
2 c4 + (ћ c m  / (r sin(δ)))2 − ћ2c2 ρ−1/2∇ 2ρ 1/2.                         (12) 

 

If we assume 

 

 ρ 1/2 = f(r) g(ϕ,δ ) ,                                        (13) 

 

Eq. (12) can be separated into two differential equations with respect to r and  

δ  (λ = separation parameter) [3]: 

 

(r2 / f)[ (1 / r2)∂ (r2 ∂ f /∂ r)/∂ r + (E2 − m0
2 c4) f / (ћ2c2) ] = λ                        (14) 

and 

λ = (− 1 / g )[ (1 / sin(δ))∂ (sin(δ) ∂ g /∂ δ )/∂ δ − (m  / sin(δ))2 g ] .            (15) 
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Solutions of the differential equation (15) are the spherical harmonics 

 

glm (ϕ,δ ) = (-1)m [(l − | m | )! (2 l + 1) / ((l + | m | )! 4 π )]1/2 eimϕ               (16) 

(1 / 2l l! ) (∂ /∂ (cos(δ))l (cos2(δ)− 1)l, 

 

where the constants  λ  and  m  have the eigenvalues  

 

 λ = l (l +1),        l  =  0, ±1, ±2,…                (17) 

and 

 −l ≤ m ≤ +l .                                         (18) 

 

Eq. (14) with (17) leads to Bessel’s differential equation whose normalizable 

solutions are given by the spherical Bessel functions [7]: 

 

fl(ε r) = c (− ε r )l (∂ /((ε r )∂ (ε r ))l [sin(ε r) / (ε r)],                           (19) 

 

where  

ε 2 =  (1 / d)2 = (E2 − m0
2 c4) / (ћ2c2)                (20) 

applies. 

 

Substituting  l = 1, m = -1, 0, 1  in (17) and (18), we obtain from (16) and (19) the 

eigenfunctions of the first bound photons: 

 

 g1m (ϕ,δ ) = (-1)m (3/4 π )1/2 eimϕ cos(δ)                           (21) 

and 

f1 (ε r) = c1 [sin(ε r) / (ε r)2 − cos(ε r) / (ε r)].                                    (22) 

 

Thus, we obtain from (22) for the radial density distribution of the first bound 

photons (Fig. 1): 

 

f1
2(x) = c1

2 [sin(x) / x2 − cos(x) / x]2,       with  x = ε r.              (23) 
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Figure 1:  y = f1
2(x) / c1

2 = [sin(x) / x2 − cos(x) / x]2 

 

Zero points of the density distribution (23)  

 
 
                   
 

  
 

are numerical solutions of the equation  

 

tan(x) − x = 0 .                               (24) 

 

Thus, the density distribution of the very first bound photon is located in the interval 

 

r1 ≤ r ≤  r2 ,  r1 = 0,  r2 = 4,49341 d.                 (25) 

  

Performing the integral in the equation (ε = 1 / d) 

 

1 = c1
2 (3 /4 π )∫0

2π∫0
π∫0

4.49341 d r2 sin(δ) cos2(δ)[sin(ε r) / (ε r)2- cos(ε r) / (ε r)]2 dϕ dδ dr,  

 

we obtain the normalization constant 

 

c1
2 =  0,46714 / d 3.                  (26) 
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4. Solution for free photons 

 

Going from bound to free photons, we must reduce the reduced relativistic quantum 

hydrodynamic fundamental equations (6)-(8) once again, so that no particle mass and 

no particle momentum are present  (m0 = 0,  p = 0):  

 

 ∂ (ρ 
0 (E0 /c2)/∂ t = 0 ,                  (27) 

E0
2 = − ћ2c2 ρ0

−1/2� ρ0 1/2                             (28) 

 l = 0 , m = 0 .                    (29) 

 

Substituting (29) in (16) and (19), we obtain the eigenfunctions of free photons in the 

stationary state: 

 

 g00 (ϕ,δ ) = (1 / 4π )1/2                   (30) 

and 

f0 (k r) = c0 sin(k r) / (k r),                 (31) 

 

where 

E0
2 = ћ2c2k2                   (32) 

applies. 

 

The free photons are enclosed in the density distribution of the bound photons, i.e. in 

the intervals  r1 ≤ r ≤  r2  with boundary conditions  ρ0 (r1) = 0  and  ρ0 (r2) = 0  – like 

in a box with infinite potential walls – , so that according to Eq. (31)  

 

 f0 = c0 (sin(k1 r) / (k1 r)) (sin(k2 r) / (k2 r)), k1 = n0 π / r1 , k2 = n0 π / r2                 (33) 

 

holds.  
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5. Derivation of the total energy equation 

 

Since we have put the density distribution of free photons in the density distribution 

of bound photons, the radial amplitudes of the probability density must also be 

coupled together:  

 

 fc =  f0  f .                   (34)  

 

Substituting (34) in the energy equation (14) yields 

                       

E2 = m0
2 c4 + ћ2c2 l (l + 1) / r2 - ћ2c2 (1 / r2 (fc / f0))∂ (r2 ∂ (fc / f0) /∂ r)/∂ r .           (35) 

 

Evaluation of (35) gives ( ∂ /∂ r = ′  ) 

  

E2 = m0
2 c4 + ћ2c2 l (l + 1) / r2 - ћ2c2[fc′′ / fc -  f0′′ / f0  + 2(1 / r -  f0′ / f0 ) (f′ / f )].    (36) 

 

If we calculate the unknown quantities (f′ / f ), (f0′ / f0 ), (f0′′ / f0 ) occurring in (36) 

according to (22) and (33), we obtain 

 

 f′ / f  = (1 / r) [tan(ε r)(ε2r2 – 2) + 2ε r] / [tan(ε r) – ε r],               (37) 

 

 f0′ / f0 = k1 cot(k1 r) + k2 cot(k2 r) – 2 / r,                           (38) 

 

f0′′ / f0 = 2 k1 k2 cot(k1 r) cot(k2 r) – (4 / r)( k1 cot(k1 r) + k2 cot(k2 r))             (39) 

   + 6 / r2 –  k2 
2 – k1

2.                            

 

Substituting (37)-(39) in (36) we get the total energy equation for free and bound 

photons: 

E2=  m0
2 c4 + ћ2c2 l (l + 1) / r2 + ћ2c2[2 k1 k2 cot(k1 r) cot(k2 r)              (40) 

– 4 k1 cot(k1 r) / r  – 4 k2 cot(k2 r) / r + 6 / r2 –  k2 
2 – k1

2
   

– 2 (1 / r + 2 / r  –  k1 cot(k1 r)  –  k2 cot(k2 r)) 

((1 / r) (tan(ε r)(ε2r2 – 2) + 2ε r) / (tan(ε r) – ε r))] – ћ2 c2 fc′′ / fc .         
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6. Casimir energy for a single bound photon 

 

Since in Eq. (40) the term  – ћ2 c2 fc′′ / fc  describes the derivation of the total energy 

eigenvalues from the radial wave function fc and mathematically assigns an 

identically large wave amplitude to the foregoing forms of energy, this term can be 

ignored by calculating the total energy. We further reorganize Eq. (40) so that the 

total energies of free and bound photons are placed on two different sides of the 

equation separated from each other: 

 

[E2 – m0
2 c4  – ћ2c2 l (l + 1) / r2]1/2 =                  (41) 

± ћ c [– k1
2 –  k2 

2 + 2 k1 k2 cot(k1 r) cot(k2 r)  

– 4 k1 cot(k1 r) / r   – 4 k2 cot(k2 r) / r + 6 / r2  

+ 2 (3 / r  –  k1 cot(k1 r)  –  k2 cot(k2 r)) h]1/2,  

 

with   h =  – (1 / r) (tan(ε r)(ε2r2 – 2) + 2ε r) / (tan(ε r) – ε r)).              (42) 

    

The total energy of free photons in the interior of the bound photon must now interact 

at the point  ρ0(r2) = 0  with free photons in vacuum and give, by means of 

summation, the Casimir energy of the bound photon. For this purpose we proceed as 

in the famous work of Casimir [8] and carry out the summation over the quantum 

number  n0  using the Euler-MacLaurin sum formula: 

 

ECas (r) = ћ c (∑ ∞n0=0 F(n0) – ∫ ∞0 F(n0) dn0 )                 (43) 

= ћ c [ – (1 / 2) F(0) – (1 / 12) F′(0) + (1 / 720) F′′′(0)],  

 

where according to (41) 

 

F(x) = [– (k2 
2 – k1

2) x2  + 2 k1 k2 x2 cot(k1 r x) cot(k2 r x)                (44) 

            – (4 / r + 2 h) (k1 x cot(k1 r x) + k2 x cot(k2 r x)) + 6 / r2 +  6 h / r]1/2  

 

with   x = n0 ,  k1 = π / r1, k2 = π / r2                  (45)

  

holds. 
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Eq. (44) gives 

 

 F(0) = [ 2 / r2 – 4 h / r  – 8 / r2   + 6 / r2 +  6 h / r]1/2 = (2 h / r)1/2             (46) 

        = [(2 / r2)(tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))]1/2. 

 

Formation of derivatives  F′ (x), F′′′ (x)  (see Appendix) and examination of the limit  

x → 0  yield 

 

 F′ (0) = 0                   (47) 

and 

 F′′′ (0) = 0.                    (48) 

 

Hence, we obtain according to (43) with (46)-(48) the Casimir energy for a single 

bound photon: 

 

ECas (r) =  – (1 / 2 ) ћ c [(2 / r2)(tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))]1/2.       (49) 

  

 

7. The total energy of a single bound photon  

 

Substituting the Casimir energy (49) in the total energy equation (41) we obtain   

 

E2 = m0
2 c4  + ћ2c2 l (l + 1) / r2                  (50) 

      + ћ2c2 (1 / 2 r2) [ (tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))]. 

 

In order to determine the total energy of a single bound photon, we must calculate 

mean values in Eq. (50) with the help of the probability density: 

 

<E2> = m0
2 c4  + ћ2c2 l (l + 1) <1 / r2>                  (51) 

             + ћ2c2 (1 / 2) <[(1 / r2) (tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))]> . 
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The mean values in Eq. (51) can be determined by the integrals 

 

<1 / r2> = c1
2 (3 /4 π ) ∫0

2π∫0
π∫0

4.49341 r2 sin(δ)(1 / r2)cos2(δ)              (52) 

                 [sin(ε r) / (ε r)2 - cos(ε r) / (ε r)]2 dϕ dδ d r 

= 0,19314 / d 2 

and 

 <[(1 / r2) (tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))]>               (53) 

=  c1
2 (3 /4 π ) ∫0

2π∫0
π∫0

4.49341 r2 sin(δ) (1 / r2)  

   (tan(ε r)(ε2r2 – 2) + 2ε r) / (ε r – tan(ε r))cos2(δ)) 

   [sin(ε r) / (ε r)2 - cos(ε r) / (ε r)]2 dϕ dδ d r  

= 0,096569 / d 2 . 

 

Substituting (52) and (53) in the Eq. (51) yields 

 

<E2>  =  m0
2 c4 + 0,38628 ћ2c2 / d 2  + 0,0482845 ћ2c2 / d 2.             (54) 

 

Reorganizing Eq. (54) we obtain 

 

(E + m0
 c2 [1 + 0,38628 / x2]1/2) .                 (55) 

(E – m0
 c2 [1 + 0,38628 / x2]1/2)    

=  ( m0
 c2 0,21974 / x ) 2  

 

with  x = m0 c2 d / (ћ c).                   (56) 

 

Eq. (55) is quadratic in E . But it can be split into two independent energy equations: 

 

E1 = m0
 c2[1 + 0,38628 / x2]1/2 – m0

 c2 0,21974 / x              (57) 

and 

E2 = – m0
 c2[1 + 0,38628 / x2]1/2 + m0

 c2 0,21974 / x ,              (58) 

 

with  E1 + E2 = 0. 
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At the beginning of this work we assumed without any explanation that free and 

bound photons are the simplest case for the solution of the relativistic quantum 

hydrodynamic fundamental equations. However, it turns out by the energy equations 

(57) and (58), that the single bound photon is a binding state of a particle and its 

antiparticle. The particles have according to (57) the effective potential (Fig. 2) 

 

E1eff (x) = E1 / m0
 c2 =  [1 + 0,38628 / x2]1/2  – 0,21974 / x .             (59)

   

 

 
 

Figure 2: y = E1 / m0
 c2 = [1 + 0,38628 / x2]1/2  – 0,21974 / x 

 

Hence, centrifugal and Casimir forces keep each other in balance. The equilibrium 

state is given by the lowest point of the potential well: 

 

d ([1 + 0,38628 / x2]1/2  – 0,21974 / x) / dx =              (60) 

(0,21974 x – 0,38628 / [1 + 0,38628 / x2]1/2) / x3 = 0. 
 

Solving Eq. (60) , we obtain xMin
 = 1,64436, i.e. dMin = 1,64436 ћ c / (m0 c2). Accordingly, 

the total energy of a single particle in equilibrium is given by  

 

 E1 / m0
 c2 =  [1 + 0,38628 / 1,64436 2]1/2  –  0,21974 / 1,64436             (61) 

                = 1 + 0,06905  – 0,13363 = 0,93542 , 
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where  are 

1 . m0
 c2  the naked, unmeasurable mass energy,  

0,06905  m0
 c2  the kinetic energy, 

– 0,13363 m0
 c2 the Casimir energy, 

0,93542 . m0
 c2 the resulting, effective mass energy. 

 

However, it cannot be specified that antiparticles have corresponding stability 

conditions like particles. A single antiparticle has according to (58) the effective 

potential 

 

E2eff (x) = E2 / m0
 c2 = – [1 + 0,38628 / x2]1/2  + 0,21974 / x .              (62) 

 

Based on the effective potential (62) it is not possible to state any equilibrium, 

because no potential well, but a potential barrier exists, i.e. a single antiparticle, 

looking for stability, breaks apart as soon as it is created. Only the bound state of a 

particle and its antiparticle fulfills the stability condition  E1 + E2 = 0  and has 

energetic neutrality towards the vacuum. But the bound state of a particle and its 

antiparticle cannot be calculated using the reduced fundamental equations (6)-(8). For 

this purpose, the full force of the fundamental equations of the RQH (1)-(3) is 

required; but this is a task beyond the scope of the present paper.  

 

 

8. Summary and conclusions 

 

In this study we started with the systematic solution of the fundamental equations of 

the RQH and solved them in the simplest case for free and bound photons. The 

resulting solutions are spherical harmonics and spherical Bessel functions. In order to 

calculate the Casimir energy, we put the density distribution of free photons in the 

density distribution of bound photons and derived thereby the total energy equation 

for free and bound photons. For a single bound photon we calculated the Casimir 

energy using the Euler-MacLaurin sum formula. The occurrence of the Casimir 

energy in the quantum hydrodynamic picture of elementary particles is inevitable, 
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because free photons are enclosed in the interior of elementary particles like in a box 

with infinite potential walls and on the border to vacuum, always takes place pressure 

compensation with vacuum photons. 

 

The question of the stability of a single bound photon is solved by centrifugal and 

Casimir forces keeping each other in balance. The fact that the total energy equation 

can be split into two independent energy equations is interpreted as the effect that the 

single bound photon is a binding state of a particle and its antiparticle. In the case of 

antiparticles, centrifugal and Casimir forces responsible for stability act in reverse 

direction, so that antiparticles break apart as soon as they are created. From this it 

follows that the antiparticle persists only in a bound state with the particle keeping 

energetic neutrality towards the vacuum. But whether the binding state of a particle 

and its antiparticle is quantum hydrodynamically possible or not, can only be decided 

if the fundamental equations of  the RQH (1)-(3) have been entirely solved. 
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The Derivatives  F′ (x)  and  F′′′ (x) 
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