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THE EQUATIONS OF PLANETARY MOTION AND THEIR SOLUTION 
 
 

By:  Kyriacos Papadatos 
 
 

ABSTRACT 
 

 
Newton's original work on the theory of gravitation presented in the Principia, even in its best 
translation, is difficult to follow. On the other hand, in the literature of physics this theory appears 
only in fragments. It is because of its intellectual beauty that the author decided to compile all those 
fragments and present this theory in its complete version. The framework is made up of four parts: (a) 
setting up the differential equations that describe planetary trajectories; (b) linearising these equation; 
(c) providing their solution.  
 
 
 
1. INTRODUCTION 
 
     From the world of antiquity the Greeks knew the existence of the five planets (Mercury, Venus, 
Mars, Jupiter, and Saturn). They generally believed that the Earth is the center of the Universe and 
that the sun and the planets revolve around it. But around 280 b.c., a Greek astronomer, Aristarchus 
of Samos (310-250 b.c.), in a revolutionary departure from the geocentric idea, he reasoned that the 
Earth rotates on its axis once every 24 hours, and along with the other planets it revolves around the 
sun once a year [1]. 
     The above proposition was not taken seriously by the AristarchusÕ contemporaries. The view that 
the Earth was in the center of the Universe was deeply rooted in their religious beliefs. This distorted 
view continued to prevail unchallenged for as many as eighteen hundred years, whereupon a Polish 
monk, Nicholas Copernicus (1473-1543), revived AristarchusÕ proposition as a plausible explanation 
for the apparent movement of the planets. Copernicus was credited in the history of science as the 
inventor of the heliocentric idea for our solar system, but to Galileo he was just "the restorer and 
confirmer" [1]. 
     Another great mind in the history of Astronomy, Johannes Kepler (1571-1630) was destined to 
advance Copernicus' work. Based on the experimental work of another great Danish astronomer, 
Tycho Brahe (1546-1601), Kepler claimed that planets prescribe elliptical rather than circular orbits 
around the sun, which were in perfect agreement with their apparent motion. 
     AristarchusÕ idea, restored by Copernicus, and advanced by Kepler, culminated to its full 
development by the genius of Isaac Newton (1642-1727). With Kepler's empirical discoveries at 
hand, Newton endeavored to answer two fundamental questions. Firstly, what force causes the 
planets to revolve around the sun; and secondly, why their orbits are elliptical. In his pursuit to find 
answers to these two questions, Newton discovered the theory of universal gravitation. 
     Subsequently, based on the law of universal gravitation and his other great discovery, the second 
law of dynamics, Newton proved theoretically that planets do indeed prescribe elliptic trajectories 
around the sun. 
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     His proof has become monumental for its ingenuity and its immense intellectual beauty. Yet, its 
coverage in physics textbooks is on the whole fragmented and incomplete. Resorting to the original 
source of this work, the arguments are found to be difficult to follow. Therefore, the author 
considered it worthwhile to attempt to reach NewtonÕs conclusion via an alternate route, so that the 
beauty of the journey along this path be exposed to its full extent.  
 
 
2.  REVIEW OF KEPLER'S LAWS OF PLANETARY MOTION 
 
     Ancient Greek astronomers had observed that the apparent motion of five "stars" (in reality 
planets) was not following a smooth path against the background of the sky as the other stars did, but 
an irregular path as shown on Figure 2.1. To them, this behavior was not normal compared to the 
observable regular pathways of the other stars. As a result, they collectively named these five 
"undisciplined stars" planets (Greek: ! " # $%&# ' ), meaning wanderers. Individually, these five 
planets were named after the Greek deities (in their Latin names) Mercury, Venus, Mars, Jupiter, and 
Saturn. The other three planets, Uranus, Neptune, and Pluto were discovered much later after the 
invention of the telescope. 
 

 
 
                FIGURE 2.1 Apparent trajectories of a planet, and of a star  
 
     According to the Copernican heliocentric model, these planets, including the Earth, revolve 
around the sun in circular orbits. However, based on Tycho Brahe's observations, Kepler concluded 
that the speculated circular orbits were not in agreement with those observations. After twenty years 
of hard work, Kepler tried elliptical orbits, and to his amazement he observed an astonishing match. 
Kepler's conclusion from this monumental work, are consummated in his three well-known laws of 
planetary motion [1]. 
 
1. The orbit of a planet is an ellipse with the sun at one of its foci. 
 
2. The line joining the sun to a planet sweeps over equal areas in equal intervals of time, 
    regardless of the length of the line. 
3. The square of the period of any planet is proportional to the cube of its mean distance 

     from the sun, i.e., p2 = kr3. The constant k is the same for any planet.  
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     As it may be observed from Figure 2.2, showing the orbit of a hypothetical planet with the sun at 
one of the foci of the ellipse, the areas PQS and RTS generated at equal time intervals are equal. 
 
 

 
 
 
 

FIGURE  2.2  Typical trajectory of the orbit of a planet 
 
 

 
3.  THE LAW OF UNIVERSAL GRAVITATION  
 
     After the discovery of the laws of dynamics, Newton's subsequent great contribution to the 
advancement of science was his discovery of universal gravitation. From his law of dynamics, 
Newton knew that a force must act on a body in order for that body to move on a curved trajectory 
(e.g., along the circumference of a circle or an ellipse). After many years of intense study, and guided 
perhaps by Kepler's empirical laws of planetary motion, he discovered that the force responsible for 
the planetary trajectories was no other than the force, which is commonly known as gravity. He then 
concluded that this force, identified as an attraction between two masses, might be mathematically 
defined as follows: 
     Between two objects of mass m and M (Fig. 3.1), respectively, at a distance r from each other, an 
attractive force F is developed whose magnitude is proportional to each of the two masses and 
inversely proportional to the square of their distance "r", i.e.; 
 

                                             
 

FIGURE 3.1 Gravitational attraction between two masses 
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! 

F = G
mM

r 2                                                                       (3.1) 

 
where G is defined as the constant of universal gravitation and its value is: 
 

                                                   G = 6.670 x 10-11  Newton-m2/kg2  
 

                                                     = 6.670 x 10-8   dyn-cm2/gm2                                                   (3.2) 
 
 
Equation (3.1) applies equally to a sun-planet pair and to any other pair of masses anywhere in the 
Universe. From Figure 3.1, and equations (3.1a) and (3.1b), it is shown that this attraction force is 
effected on each of the two masses. From now on, this force will be defined as the gravitational 
force. 

 

                                          
        

! 

Fm = G
mM

r 2 ur                                                          (3.1a) 

 

                                             
    

! 

FM = " G
mM

r 2 ur                                                         (3.1b) 

 
where ur  is a unit vector in the direction of m to M. 
 
It is tempting to speculate that Newton is quite likely to have been guided by KeplerÕs laws in 
deriving the law of universal gravitation. Thus, using the circle as a special case for an ellipse, the 
centripetal force keeping a planet on its circular orbit is equal to the centrifugal force, that is: 
 

                                                                      

! 

F =
m" 2

r
                                                            (3.2) 

Taking into consideration that 

                                                                      

! 

" =#r =
2$
T

r                                             (3.3) 

then equation (3.2) becomes: 

                                        

! 

F =
4" 2r

T2                                     (3.4) 

 
But in accordance with KeplerÕs third law, we will have: 
 

                                                                      

! 

T2 = kr3                                                              (3.5) 
 
Therefore, substituting equation (3.5) into (3.4) we get: 

!



!&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

                                                                   

! 

F =
4" 2

k

# 

$ 
% 
% 

& 

' 
( 
( 

m

r2
                                                       (3.6) 

     Equation (3.6) is no different than equation (3.1) if we substitute 

! 

4" 2

k
 for GM where G is the 

gravitational constant and M is the mass of the sun. 
 
 
 
4.  GENERAL EQUATIONS OF PLANETARY MOTION IN CARTESIAN CO-ORDINATES 
 
     Shown on Figure 4.1 are two point masses m and m( having co-ordinates in a Cartesian inertial 
system (i.e., orthogonal, not rotating, and not accelerating) x, y, z, and x(, y(, z(, respectively.  
If the distance between m and m( is r, then in accordance with NewtonÕs law of gravitation the force 
acting on each of the masses will be: 
 

                                                     

! 

F = G
m " m 

r 2                                                                     (4.1) 

 

                                                     

! 

" F = #G
m " m 

r 2                                                                   (4.2) 

 
It has been assumed that the vector r  has a positive direction from m to m(. Therefore, as the  

force F has the direction of the vector r  will be positive, whereas the force F( will be negative.  
The cosines for the components Fx, Fy, and Fz of the force F are as follows:   

 

                                               

! 

" x # x
r

,     

! 

" y # y
r

,      

! 

" z # z
r

                                                       (4.3) 

 
Therefore, the component forces Fx, Fy, and Fz can be defined as follows: 
 

                                                  

! 

Fx = F
" x # x
r

                                                                            (4.4)     

                                                  

! 

Fy = F
" y # y
r

                                                                             (4.5) 

             

                                                   

! 

Fz = F
" z # z
r

                                                                              (4.6) 
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FIGURE 4.1 Illustration of two point masses under mutual gravitational attraction 
 
 
 

Similarly, the cosines for the components of the force F( are: 

                                          ,                                                                        (4.7)      

The component forces .for the force F( are: 

                                  

! 

Fx
' = " F 

x # " x 
#r

= #F
x # " x 
#r

= F
x # " x 

r
                                                    (4.8)  

                                 

! 

Fy
' = " F 

y# " y 
#r

= #F
y# " y 
#r

= F
y# " y 

r
                                                      (4.9)   

                                 

! 

Fz
' = " F 

z# " z 
#r

= #F
z# " z 
#r

= F
z# " z 

r
                                                         (4.10)     

 
In accordance with NewtonÕs second law of dynamics, we have: 
 

                                                         

! 

Fx = m
d2x

dt2                                                                                (4.11)     

                                                        

! 

Fy = m
d2y

dt2                                                                                (4.12) 

                                                       

! 

Fz = m
d2z

dt2                                                                                   (4.13)      
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     Combining equations (4.11), (4.12), and (4.13) with equations (4.4), (4.5), and (4.6), we will get the equation 
of motion for the mass m. Thus, we will have: 

  

                                                 

! 

d2x

dt2 = G " m 
" x # x

r 3                                                                 (4.14) 

                                                 

! 

d2y

dt2 = G " m 
" y # y

r 3                                                                 (4.15) 

                                                 

! 

d2z

dt2 = G " m 
" z # z

r 3                                                                   (4.16) 

 
Applying the same logic for the mass m(, we will also have: 
 

                                                    

! 

Fx
' = " m 

d2 " x 

dt2                                                                       (4.17) 

                                                    

! 

Fy
' = " m 

d2 " y 

dt2                                                                       (4.18) 

                                                    

! 

Fz
' = " m 

d2 " z 

dt2                                                                        (4.19) 

 
Combining equations (4.17), (4.18), and (4.19) with (4.8), (4.9), and (4.10), we obtain the equations of motion 
for mass m(. Thus; 

                                                   

! 

d2 " x 

dt2 = Gm
x # " x 

r 3                                                                 (4.20)  

                                                   

! 

d2 " y 

dt2 = Gm
y# " y 

r 3                                                                 (4.21) 

                                                   

! 

d2 " z 

dt2 = Gm
z# " z 

r 3                                                                   (4.22) 

 

where                          

! 

r = " x # x( )2 + " y # y( )2 + " z # z( )2
                                               (4.23) 

 
Introducing ÔjÕ additional point masses, equations (4.14), (4.15), (4.16), and (4.20), (4.21), (4.22) become: 
 
 

                                      

! 

d2x

dt2 = G " m 
" x # x

r 3 + Gmj
j

$
xj # x

r j( )3                                                (4.24) 
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! 

d2y

dt2 = G " m 
" y # y

r 3 + Gmj
j

$
yj # y

r j( )3                                                (4.25) 

                                     

! 

d2z

dt2 = G " m 
" z # z

r 3 + Gmj
j

$
zj # z

r j( )3                                                 (4.26) 

                                   

! 

d2 " x 

dt2 = Gm
x # " x 

r 3 + Gmj
j

$
xj # " x 

r j
'( )

                                                (4.27) 

                                  

! 

d2 " y 

dt2 = Gm
y# " y 

r 3 + Gmj
j

$
yj # " y 

r j
'( )3                                                   (4.28) 

                                  

! 

d2 " z 

dt2 = Gm
z# " z 

r 3 + Gmj
j

$
zj # " z 

r j
'( )3                                                    (4.29) 

 

where                   

! 

r j = x " x j( )2
+ y" yj( )2

+ z" zj( )2
                                                 (4.30) 

 

     and                 

! 

" r j = " x # x j( )2
+ " y # yj( )2

+ " z # zj( )2
                                                (4.31) 

 
To simplify the system of equations (4.24) through (4.29), we rewrite them based on a frame of reference whose 
the origin coincides with the mass m. The new variables X, Y, and Z are defined by the following relationships: 
 

 
 
 
 
                                    

! 

" x # x = X;      

! 

" y # y =Y ;     

! 

" z # z = Z                                     (4.32a) 
 
 
                                 

! 

x j " x = X j  ;    

! 

yj " y =Yj  ;    

! 

zj " z = Z j                                 (4.32b) 

 
 
By subtracting (4.32a) from (4.32b), we also get: 
 
 

                        

! 

x j " # x = X j " X  ;   

! 

yj " # y =Yj " Y   ;    

! 

zj " # z = Z j " Z                  (4.33) 

 
 
Subtracting equation (4.24) from (4.27), (4.25) from (4.28), and (4.26) from (4.29); and substituting the 
relationships (4.32a), (4.32b), and (4.33), we get: 
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! 

d2X

dt2 = " G m+ # m ( ) X

r 3 " Gmj
j

$
X j

r j( )3 + Gmj
j

$
X j " X

# r j( )3                         (4.34) 

                

! 

d2Y

dt2 = " G m+ # m ( ) Y

r 3 " Gmj
j

$
Yj

r j( )3 + Gmj
j

$
Yj " Y

# r j( )3                            (4.35) 

                

! 

d2Z

dt2 = " G m+ # m ( ) Z

r 3 " Gmj
j

$
Z j

r j( )3 + Gmj
j

$
Z j " Z

# r j( )3                           (4.36) 

 

where                                 

! 

r = X2 +Y2 + Z2                                                                (4.37) 
 

                                              

! 

r j = X j
2 +Yj

2 + Z j
2                                                              (4.38) 

 

                                              

! 

r j '= X " X j( )2
+ Y " Yj( )2

+ Z " Z j( )2
                             (4.39) 

 
To simplify notation, we rewrite equations (4.34) through (4.39) with new variables  x = X,  y = Y,  z = Z,   
xj = Xj,  yj = Yj, and  zj = Zj. We also set M = m, and m( = m. Thus we get: 
 

     Equations (4.40) through (4.45) describe the motion of a planet of mass m with respect to a sun of mass M 
under the interference of planets m1, m2,É,m j. The variables x, y, z are the Cartesian co-ordinates of the planet 
m in a frame of reference whose origin is the sun. The variables xj, yj, and zj are the Cartesian co-ordinates of the 
planet mj in the same frame of reference. It should be noted that the equations of planetary motion were derived 
based on the assumption that the masses of the planets can be approximated to point masses. Because of the vast 
distances associated within a planetary system, this assumption is reasonable. 
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                                 (4.40) 

                    

! 

d2y

dt2 = " G M + m( ) y

r 3 " mj
j

#
yj

r j( )3 + Gmj
j

#
yj " y

$ r j( )3                  (4.41) 

                    

! 

d2z

dt2 = " G M + m( ) z

r 3 " mj
j

#
zj

r j( )3 + Gmj
j

#
zj " z

$ r j( )3                    (4.42) 

       

                                               

! 

r = x2 + y2 + z2                                                        (4.43) 
                                              

                                              

! 

r j = xj
2 + yj

2 + zj
2                                                   (4.44) 

 

                                              

! 

r j '= xj " x( )2
+ yj " y( )2

+ zj " z( )2
                    (4.45)                                                                       

 
 

 
 

 
5.  A SIMPLIFIED EXAMPLE - A SOLAR SYSTEM WITH A SINGLE PLANET 
 
     Let us consider a solar system made of a sun and a single planet. Before we set up the equations of motion for 
the planet, we will prove the following law: 
 
If a mass is moving under the influence of a central force, its trajectory will lie on the same plane. 
 
To prove this law, we already know that the angular momentum L of a body A in motion under a force F is: 
 
 

                                                       
    

! 

dL
dt

= r x F                                                                        (5.1) 

 
where r is a vector indicating the position of the body A with respect to a fixed point O at time t (see Figure 
(5.1). 
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FIGURE 5.1 Illustration of a body in circular motion under the effect of a force F. 
 
In the present case, the gravitational force acting on the planet is central, implying that the vector r  and the force 
F are of the same direction. Then, in accordance with equation (5.1) above, the derivative of the angular 
momentum L will be zero. Thus:   
 

                                                    
    

! 

dL
dt

= 0                                                                                 (5.2)                                                                                                                          

which implies  that:  
                       
                                                 

! 

L =mr x " = constant                                                           (5.2a) 
 
     A constant angular momentum, as shown by equation (5.2a), means that the plane of the vectors r  and )  
remains the same all the time. 
Now having proved that the trajectory of the planet will lie always on the same plane, we can describe it in the 
two-dimensional space. 
Setting mj = 0, and assuming that m is much smaller than M, equations (4.40) and  (4.41) become: 
 

                                                       

! 

d2x

dt2 = " GM
x

r 3                                                                  (5.3) 

                                                       

! 

d2y

dt2 = " GM
y

r 3                                                                  (5.4) 

 

where                                                   

! 

r = x2 + y2                                                                  (5.5) 
 
Equations (5.3), (5.4), and (5.5) describe the trajectory of a planet of mass m, under the effect of the gravitational 
force of a sun of mass M.  It is assumed that the masses m and M are point masses (which is a realistic 
assumption, given that the distance between the two masses is very large), and that there is no interference from 
other planets. 
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6.  THE EQUATIONS OF PLANETARY MOTION IN POLAR CO- ORDINATES 
 

     Equations (5.3) and (5.4) are not linear, and thus they cannot be solved analytically in their present form. 
Somehow, we have to convert these non-linear differential equations into linear ones by some appropriate 
transformation. In the pursuit of this goal, we will first convert these equations in a new form using polar co-
ordinates. 
     The position of a particle M in the two dimensional space can be represented in polar co-ordinates by a vector 
of magnitude r and an angle * , which the vector r  forms with the x-axis (see Figure 6.1).  
 
     The velocity )  of the particle can now be analyzed into a component ) r along the vector r and a component ) 0 
perpendicular to ) r. The relationship between Cartesian and polar co-ordinates for the position of the particle, as 
shown from Figure (6.1), may be described by the following equations:      
 
                                                           

! 

x = r cos"                                                                 (6.1) 
 
                                                           

! 

y = r sin"                                                                   (6.2) 
                

 
 

FIGURE 6.1 Analysis of velocity into polar co-ordinates 
 

                                                     
The first and second derivatives of equations (6.1) and  (6.2) result in the following relationships: 
 

                                       

! 

dx
dt

= cos"
dr
dt

# r sin"
d"
dt

                                                                     (6.3   

                                        

! 

dy
dt

= sin"
dr
dt

+ r cos"
d"
dt

                                                                    (6.4) 

                                       

! 

d2x

dt2 = cos"
d2r

dt2 # 2sin"
dr
dt

d"
dt

# r sin"
d2"
dt2 # r cos"

d"
dt

$ 
% 
& 

' 
( 
) 

2

        (6.5) 
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! 

d2y

dt2 = sin"
d2r

dt2 + 2cos"
dr
dt

d"
dt

+ rco"
d2"
dt2 # r sin"

d"
dt

$ 
% 
& 

' 
( 
) 

2

       (6.6) 

 
Substituting equations (6.5) and  (6.6) into equations (6.3) and (6.4), we get: 
    

                 

! 

cos"
d2r

dt2 # 2sin"
dr
dt

d"
dt

# r sin"
d2"
dt2 # r cos"

d"
dt

$ 
% 
& 

' 
( 
) 

2

= #GM
cos"
r 2

                (6.7)  

                

! 

sin"
d2r

dt2 + 2cos"
dr
dt

d"
dt

+ r cos"
d2"
dt2 # r sin"

d"
dt

$ 
% 
& 

' 
( 
) 

2

= #GM
sin"
r 2

                  (6.8) 

 
To simplify equations (6.7) and (6.8), we multiply (6.7) by cos*  and (6.8) by sin* . Then summing them up we 
get: 

                                                    

! 

d2r

dt2 " r
d#
dt

$ 
% 
& 

' 
( 
) 

2

= "
GM

r 2
                                                            (6.9) 

 
Now we multiply equation (6.7) by sin*  and  (6.8) by cos* , and then subtracting them we get: 
 

                                                    

! 

r
d2"
dt2 + 2

dr
dt

d"
dt

= 0                                                                   (6.10) 

 
We rewrite equations (6.9) and (6.10) as a system of two equations: Thus: 
 
                   

                                          

! 

d2r

dt2 " r
d#
dt

$ 
% 
& 

' 
( 
) 

2

= "
GM

r 2
                 (6.9) 

                                      

! 

r
d2"
dt2 + 2

dr
dt

d"
dt

= 0                    (6.10) 

 
 
Equations (6.9) and (6.10) describe the trajectory of a planet in polar co-ordinates. However, these equations are 
still non-linear. 
Continuing our effort to transform these equations into a linear version, we will make use of our earlier 
conclusion that the angular momentum of a body in motion under the influence of a central force is constant 
(equation 5.2). Thus, we will have: 
 
                                                                                                                          (6.11a) 
 
Since                                                    

! 

" = " r + " #                                                               (6.11b) 
equation (6.11a) becomes: 
                                                        

! 

L = mr x " r + mr x " #                                                   (6.11c) 
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The term mr x ) r is zero because the vectors ) r and r  have the same direction. Therefore, equation (6.11c) 
becomes: 

                                                                

! 

L = mr x " #                                                               (6.12) 
 
Since ) * is a vector perpendicular to r , the value of the angular momentum L will be: 
 
                                                               

! 

L = mr" #                                                                     (6.13) 

Since                                                   

! 

" # = r
d#
dt

                                                                     (6.14) 

then equation (6.13) becomes: 

                                                           

! 

L = mr2 d"
dt

                                                                   (6.15) 

Solving equation (6.15) for d* /dt, we get: 
 

                                                          

! 

d"
dt

=
L

mr2                                                                         (6.16) 

 
where  the value L of the angular momentum is constant. 

 
Substituting equation (6.16) into equation (6.9), we get: 
 

                                                   

! 

d2r

dt2 "
L2

m2r 3 = "
GM

r 2                                                             (6.17) 

 
Equation (6.17) contains only one variable (r) but it is still non-linear as it contains powers of r. 
We also make the observation that equation (6.10) is the derivative of equation (6.16). Thus, taking the 
derivative of equation (6.16), we get: 
 

                                                          

! 

d2"
dt2 = #2

L
m

1

r 3
dr
dt

 

or                                                     

! 

r
d2"
dt2 + 2

L

mr2

# 
$ 
% 

& 
' 
( 

dr
dt

= 0  

or                                                       

! 

r
d2"
dt2 + 2

d"
dt

dr
dt

= 0                                                           (6.10) 

 
Therefore, the system of equations (6.9) and (6.10) is now simplified to: 
 
 
 
              
 



!"&!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

                                                  

! 

d2r

dt2 "
L2

m2
1

r 3 = "
GM

r 2                (6.17) 

 

                                                   

! 

d"
dt

=
L
m

1

r 2                                    (6.16) 

 
In our continuing effort to transform these equations into a linear form, we will make the following 
transformation [ 2 ]. 

                                                                

! 

r =
1
u

                                                                       (6.18) 

 
To combine the two equations into one, we will eliminate time, and thus we will be able to express r as a 
function of * . Thus, by differentiating (6.18), we get: 
 

                                                        

! 

dr
dt

= "
1

u2
du
d#

d#
dt

                                                             (6.19) 

 
Combining (6.16) with (6.19), we get: 
 

                                                       

! 

dr
dt

= "
1

u2
du
d#

L

mr2                                                              (6.20) 

 
Combining (6.20) with (6.18), we get: 
 

                                                      

! 

dr
dt

= "
L
m

1

u2
du
d#

u2                                                             (6.21) 

or                                                   

! 

dr
dt

= "
L
m

du
d#

                                                                         (6.21a) 

 
Differentiating also (6.22), we get: 
 

                                                   

! 

d2r

dt2 = "
L
m

d2u

d.#2
d#
dt

                                                                  (6.23) 

 
Combining (6.23) with (6.16) and  (6.18), we get: 
 

                                                   

! 

d2r

dt2 = "
L
m

# 
$ 
% 

& 
' 
( 

2

u2 d2u

d) 2
                                                                (6.23a) 

 
Substituting equations (6.23a) and (6.18) into (6.17), we get: 
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! 

d2u

d" 2 + u =
µ
h2                                                               (6.24) 

 

where                                                   

! 

u =
1
r

                                                                          (6.18) 

                                                            

! 

h =
L
m

                                                                         (6.25) 

                                                           

! 

µ = GM                                                                    (6.26) 
 
Equation (6.24) is a linear second order differential equation, which can now be solved analytically. 
It is remarkable what has been achieved with a simple transformation (Eq. 6.18). A highly non-linear differential 
equation is transformed into an ordinary linear one! It is tempting here to speculate whether this was simply by 
accident or perhaps that natural phenomena are destined to be represented only by linear differential equations. 
 
 
 
7.  SOLUTION OF THE EQUATION OF PLANETARY MOTION FOR A SOLAR SYSTEM OF A  
      SINGLE PLANET (EQUATION 6.24) 
 
The general solution of equation (6.24) will be the sum of the complementary solution uc and the particular 
integral up. The complementary solution uc is the solution of the homogeneous equation, that is: 
 

                                                       

! 

d2u

d" 2 + u = 0                                                                     (7.1) 

 
Defining the operator D = d/d* , equation (7.1) may be rewritten as follows: 
 

                                                     

! 

D2 +1( )u = 0                                                                      (7.2) 

or                                                 

! 

D + i( ) D " i( )u = 0                                                              (7.3) 
 
The general solution of equation (7.3) is the following: 
 

                                                    

! 

uc = c1e
" i# + c2e

i#                                                                 (7.4) 
 
The particular integral up may be computed as follows: 
 
We rewrite equation (7.24) using the operator D. Thus; 
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! 

D + i( ) D " i( )up =
µ
h2                                                             (7.5) 

Solving for (D+i)u, we get: 

                                               

! 

D + i( )up =
1

D " i
f x( )                                                             (7.6) 

where                                             

! 

f x( ) =
µ
h2                                                                            (7.7) 

 
From standard textbooks on differential equations, integration of the right-hand side of equation (7.6) using the 
operator 1/(D- i) results in the following: 
                             

                                                 

! 

D + i( )up = "
µei#

ih2 e" i#$ d " i#( )
                                           (7.8) 

or                                              

! 

D + i( )up = i
µ
h2 ei" e#i"                                                                         

 

or                                             

! 

D + i( )up = i
µ
h2                                                                         (7.9) 

 
Solving for up, the particular integral may be computed as follows: 
 

                                                   

! 

up =
1

D + i
µ
h2 i  

 

or                                                 

! 

up = e" i# i
µ
h2

$ 
% 
& 

' 
( 
) * ei# d#      

 

or                                                  

! 

up =
µ
h2 e" i# ei#$ d i#( ) 

 

or                                                   

! 

up =
µ
h2 e" i#ei#  

 

or                                                    

! 

up =
µ
h2                                                                           (7.10) 

 
 
Therefore, the general solution of equation (7.24) is: 
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! 

u = uc + up = c1e
i" + c2e

#i" +
µ
h2                                           (7.11) 

Using the relationships: 
                                           

                                                      

! 

ei" = cos" + i sin"                                                              (7.12) 
  

and                                                 

! 

e" i# = cos# " i sin#                                                           (7.13) 
 
equation (7.11) becomes:   

                                          

! 

u = c1 + c2( )cos" + i c1 # c2( )sin" +
µ
h2                                      (7.14) 

or                                      

! 

1
r

= c1 + c2( )cos" + c1 # c2( )sin" +
µ
h2                                         (7.14a) 

 
Since the left-hand side is a real number, the right-hand side must be a real number as well. Therefore, the 
imaginary term must be zero, implying that c1-c2=0, or c1 = c 2= C/2. Then, equation (7.14a) becomes: 
 
 
 

                                                               

! 

1
r

= Ccos" +
µ
h2                                                        (7.15) 

 
 
 
Equation (7.15) constitutes the general solution of the equation of planetary motion (6.24).    
 
7.1 determination of the constant ÔCÕ in equation (7.15) 
 
Let the velocity and the position vector at time t=0 be ) o and 

! 

r0, respectively. From equation (7.15) we get: 
 

                                                   

! 

cos2 " =

1
ro

#
µ
h2

$ 

% 
& 

' 

( 
) 

2

C2                                                             (7.1.1) 

 
Also, by differentiating equation (7.15) we get: 
 

                                                  

! 

"
1

r 2
dr
dt

# 
$ 
% 

& 
' 
( = " Csin)

d)
dt

 

 

or                                                      

! 

dr
dt

" 
# 
$ 

% 
& 
' = Cr2 sin(

d(
dt

                                                      (7.1.2) 
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Taking into consideration equation (6.16), equation (7.1.2) becomes: 

                                                                 

! 

dr
dt

" 
# 
$ 

% 
& 
' = Chsin(                                      (7.1.3) 

from which we will have: 

                                                                 

! 

sin"( )2 =

dr
dt

# 
$ 
% 

& 
' 
( 

2

C2h2                                      (7.1.4) 

 
Summing up equations (7.1.1) and  (7.1.4) we will have: 
 

                                                    

! 

1
ro

" 

# 
$ 

% 

& 
' 

2

+
µ

h2

" 
# 
$ 

% 
& 
' 

2

(
2µ

roh
2

C2 +

dr
dt

" 
# 
$ 

% 
& 
' 

2

C2h2 =1                   (7.1.5) 

 
Now we will compute (dr/dt)2 by using the principle of conservation of energy. Thus, we will have: 
 

                                                

! 

E =
1
2

m" o
2 #

mµ
ro

=
1
2

m " or
2 + " o$

2( ) #
mµ
ro

=
1
2

m
dr
dt

% 
& 
' 

( 
) 
* 
o

2

+ ro
2 d$

dt

% 
& 
' 

( 
) 
* 
o

2+ 

, 
- 
- 

. 

/ 
0 
0 
#

mµ
ro

=
1
2

m
dr
dt

% 
& 
' 

( 
) 
* 
o

2

+ ro
2 L2

m2ro
4

+ 

, 
- 
- 

. 

/ 
0 
0 
#

mµ
ro

                          (7.1.6) 

 
 

 
Solving equation (7.1.6) for (dr/dt)2, we get: 
 

                                                   

! 

dr
dt

" 
# 
$ 

% 
& 
' 
o

2

=
2E
m

+
2µ
ro

(
h2

ro
2

                                                    (7.1.7) 

 
 
Substituting (7.1.7) into (7.1.5), we get: 
 



!#+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

                                                  

! 

1

ro
2 +

µ 2

h4 "
2µ

roh
2

C2 +

2E
m

+
2µ
ro

"
h2

ro
2

C2h2 =1                      (7.1.8) 

 

or                                                     

! 

µ 2

h2 +
2E
m

= C2h2                                                     (7.1.9) 

 
Solving equation (7.1.9) for C, we get:                                                        

                                                       

! 

C =
µ
h2 1+

2Eh2

mµ 2
                                                 (7.1.10)  

Substituting equation (7.1.10) into equation (7.15),  we get the equation of planetary motion, that is: 
 
 

                                                     

! 

1
r

=
µ
h2 1+

2Eh2

mµ 2 cos" +
µ
h2                                     (7.1.11) 

 
 
Equation (7.1.11) can be written in a more simplified form as follows: 
 

                                                     

! 

1
r

=
1
ef

1+ ecos"( )                                                      (7.1.12) 

 
Equation (7.1.12) is the familiar expression of a conic section, where: 
                                                  

                                                             

! 

e= 1+ 2
Eh2

mµ 2
                                                        (7.1.13) 

                                                            

! 

f =
h2

µ 1+ 2
Eh2

mµ 2

                                                     (7.1.14)                                                        

                                                            

! 

h =
L
m

                                                                            (6.25) 

 
                                                            

! 

µ = GM                                                                         (6.26)  
 

and                                                     

! 

E =
1
2

m" 2 #
mGM

r
                                                      (7.1.15) 
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If the value of e is less than 1, the conic section is an ellipse, if it is equal to 1 is a parabola, and if it is greater 
than 1 is a hyperbola. Obviously, from equation (7.1.13) it is inferred that the total energy E must be negative 
and the expression under the radical positive in order for e to be positive and less than 1. Indeed, based on the 
equations (7.1.13) through (7.1.15), and (6.25) and (6.26), using the values: r =1.49x1011 m, m =5.98x1024 
kg, M=1.98x1030 kg, T=3.16x107 sec, and G=6.67x10-11 Newton-m2/kg2, it is easily proven that E is negative 
and with absolute value less than one, resulting a positive and less than one e. Therefore, equation (7.1.11) 
describes an ellipse. 
 
 
8.  VERIFICATION OF KEPLERÕS LAWS 
 
     KeplerÕs first law, that planets prescribe elliptical orbits around the sun, is selfÐevident from equation 
(7.1.11), which has been shown above to be indeed an ellipse.  
  
     KeplerÕs second law can be verified as follows: The area that the radius r sweeps over between 
times t and t++t is: 
 

                                              

! 

dA =  
1
2

rd"( )r =  
1
2

r 2d"                               

 

or                                           

! 

dA =  
1
2

r 2 d"
dt

dt                                               (8.1)                  

 
Combining equation (8.1) with equation (7.1.12) and integrating, we get: 
          

                                             

! 

A12 =
e2 f 2

1+ ecos"( )2
d"
dt

# 

$ 
% % 

& 

' 
( ( 

t1

t2

) dt                              (8.2) 

 
To compute this integral is not an easy task. Therefore, we leave this challenge to the mathematicians. 
However, there is an easier way to prove KeplerÕs second law. 
 
Integrating equation (8.1) between time t1 and time t2, we get: 
 

                                               

! 

A12 = r 2 d"
dt

# 
$ 
% 

& 
' 
( 

t1

t2

) dt                                                 (8.3) 

 
 To verify this law requires that the quantity resulting from the above integration be a function of the 
time difference (t2 - t1) only. But for this to happen, the integrand in equation (8.3) must have a 
constant value. Indeed, in accordance with equation (6.15), we have: 
 

                                                     

! 

r 2 d"
dt

=
L
m

                                                          (8.4) 
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Therefore, the integral in equation (8.3) becomes: 
 

                                                     

! 

A12 =
L
m

(t2 " t1)                                                (8.5) 

 
Equation (8.5) states that the area A12 swept over by the radius r depends on the time interval  (t2-t1) 
only, regardless at which point of the ellipse the starting time is taken, which verifies KeplerÕs second 
law. It is reminded that the angular momentum L is constant (see section 5.0 ). 
 
     With regard to KeplerÕs third law, given that the radius of an ellipse is not constant, it cannot be 
verified analytically, except in the special case where the eccentricity is very small and the ellipse can 
be approximated to a circle.  
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