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A draft calculation of the balance of forces, which determine mean orbital distances of 

rocky planets in the spirit of Beeckman, Bullialdus, DesCartes and Newton leading to 
logical results. Short history of the topic has been discussed. 
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There has been near-to-zero interest in astronomy in understanding the background of planetary 
orbits in the more than three hundred years, which have passed since Bernoulli told Newton that 
[the elliptic shape of orbits] cannot be explained by the inverse square law for gravitation 
(Pourciau, 1997). 
  

 
Fig.1 Solar system in approximate scale. Credit: Liam Burnett and Duncan Lloyd 



The universal nature of Kepler’s laws was so narcotic, that astronomers easily made long-
standing errors in the following ways: 

1. They assume that Newton’s modification of Kepler’s 3rd law is “universal” despite 
obtaining densities of primaries like 0.7, 

2. They assume, that Newton’s modification of Kepler’s 3rd law works well also for the 
highly inclined orbits of secondary’s,  

3. They mix gravitational attraction with non-mainstream gravitomagnetic forces. The strange 
equation  

                            
tells us, that there is a connection between the spin of the primary and orbital movement of the 

secondary. The big G from this equation does not pertain to attraction between two objects along 
straight lines, 

 

4. They cannot explain origin of formula . The mainstream typically tries 
to derive this formula from orbital motion, not the attraction of the spheres*. The thoughts 
of dissidents I have come across were not much better(Unzicker, 2008; Wang, 2008; 
Khaidarov, 2004; Nikitin, 2015; Albers, 2015; Hassani, 2015A, 2015B; Richter, 2015; 
McDowell, 2009; Droescher and Hauser, 2011), 

                                                   
5. They use “Newton’s formula” on any scale despite it being loosely proved and other factors 

tending to interfere with measurements (Unzicker, 2007).  
 

Thinking logically, the inverse square law for gravitation could hardly be deduced from 
astronomical observations or from monitoring falling stones in the middle of the 17th century. 
The actual chain of reasoning perhaps can be restored in such an order: 
 
a) The understanding of a central force, which diminishes according to a certain rule, comes 

from Gilbert’s experiment with a magnetised needle and an iron piece, 
b) The concept of the inverse square law for gravitation has been speculated by Bullialdus in 

1645 using an analogy with the rule of diminishing of light by distance, 
c) After Huygens's work „On Centrifugal Force” (1659) the inverse square law was 

usually deduced from combining Huygens's formula a=v2/r  for the centrifugal 
acceleration with the Kepler's third law. This „inverse square law” characterises 
only solar vortex geometry, 

d) The calculations of Hooke around 1679 gave something like [Big number]/R2 = v2/R             
         which, according to Gal (2002), Newton knew about, 

e) So it is clear why Newton newer used this “equation”. Newton formally attached “gravity” 
to Kepler’s laws. The words of Newton: ”If I have seen further, it is by standing on ye 
shoulders of giants” (letter to Hooke in 1676) thus correctly characterise the 
situation at that time, 

f) Then came mathematicians, who described orbits only as mathematical objects, 
g) Einstein wanted to move out of this obscurity and made a theory, in which only the 

properties of the central body are important. 
 
Recently I have proposed a “five-force” model for celestial mechanics (fig.2): 
 



                             
 
Fig.2 „Five-force” model of celestial mechanics. F1- gravitomagnetic force, F2, F3- effects 
from Unified field, F4- radial interaction from solar vortex. Forces, which are supposed to make 
solar system relatively flat, are not shown. Photonic pressure is ignored. 
 
F1 is the force, which classics noticed first. Today we can call it non-mainstream 
gravitomagnetism or mass-dynamic forces.  
F2 and F3 are forces from Unified field (Mathis), F3 being known as a „tidal force”. It is hard to 
measure the mentioned forces in a lab experiment, because they are always present in interaction 
between two masses.  
Thus, for short distances we cannot really investigate gravity alone, but also need to look at the 
Unified field. If we consider the hot Jupiter, circling in a highly inclined orbit around a parent star 
as a two- body problem (Fig.3),     
 

                                            
   Fig.3 Hot Jupiter, circling in a highly inclined orbit around a parent star.            
 
its orbital distance, in the spirit of Newton, can be described with equation 
 
               GMm/R2 = BMm/R3 
 
as a balance within Unified field. B= GR. If we put as R the typical orbital distance of hot 
Jupiter- 3x109 m, and for G – the value from textbooks, we get B=0.2. This route leads to, so to 



speak, relatively big G, the correct value of which should be deduced from effects like solar 
control over the Öpik- Oort cloud. For this analysis we will use G=1, B= 3*109 (in case of Jupiter 
and Uranus, value of B - 3*109* / Мpl/Мs, where Мpl and Мs – masses of the planet and the 
Sun, respectively).  
 
On the other hand, for two body problems of small bodies a proportion 
 

0.5S*0.5s/R3 ~ const 
 
better fits in observation (Alksnis, 2015), where 0.5S and 0.5s - half of the surface area of the 
primary and the secondary, respectively, and R – the distance between bodies.  
Finally, non-gravitational interaction between the Earth and satellite has been aproximated as  

                                          
G*D*M*m/R 3, where D- diameter of satellite. 

 
Within our concept, tidal forces F3 can push the planet only until some 0.05 AU from the Sun, 
and for obtaing a stable orbital distance, the imagined force of equatorial repulsion F4 from solar 
vortex is necessary (which is applied to half of the surface area of the secondary). 
If our reasoning is correct, there should exist a simple relationship between the angular 
momentum, as representantive of strenght of the central vortex, half of the surface area of the 
secondary, to which the vortex force is applied, and gravitation interaction between the two 
masses: 

 
М*м 

≈ К*[AM]*0.5 s 
 
К ≈ М*м / [AM]*0.5 s 

 
where [AM] -  angular spin momentum of the primary, 0.5s- half of the surface area of the 

secondary, K - coefficient. 
 
 
Primary 

 
Mass, кg 

 
Angular 
momentum 

 
Secondary 

 
Мass, кg 

 
Half of 
surface area, 
м

2 

 
     К 

Sun 1.99*1030 1.92*1041* Mercury 3.30*1023 3.74*1013 9.1*10-2 
Jupiter 1.90*1027 6.83*1038 Io 8.93*1022 2.10*1013 2.3*10-2 
Saturn 5.69*1026 1.36*1038 Mimas 3.75*1019 2.45*1011 6.4*10-4 
Uranus 8.68*1025 2.29*1036 Oberon 3.01*1021 3.64*1012 3.1*10-2 
Neptune 1.02*1026 2.69*1036 Proteus 4.40*1019 2.77*1011 6.0*10-3 
Table 1. Proportional calculation with main vortices of solar system.  
*- value from data of helioseismology (Iorio, 2011). 
 

We can indeed see, that such a simple relationship exists (table 1.) and that Saturn and Neptune 
are not really liquid planets (the action of their vortices is weaker than formal calculation 
shows. This may also explain the weak pseudomagnetism of Saturn - in comparison with that of 
Jupiter). 

 
 



I  have argued for some time that values of  the „interplanetary magnetic field” can be used for 
understanding the radial effects of the solar vortex. Khabarova (2013) summarises the decline of 
interplanetary magnetic field as 3.8/R5/3 , where R is distance from the Sun (fig.4). 

                     
         Fig.4. Observed changes in IMF with distance from the Sun. 
 
So the challenge was to show that we can get a glimpse of the balance of forces, which are behind 
the orbits we see, without philosophy about nature of gravity and vortices. Within my model for 
mean orbital distance for low inclined orbits 
 
   F2 = F3 + F4 
Deciphering, 

GMm/R2 = BMm/R3 + [AM]*K*0.5A*3.8/ R 5/3 
where K - coefficient, which binds spin angular momentum with the radial pressure from vortex. 
 

The question however remains how can we deal with the fact, that gravity is connected with 
mass m (cube of radius r of celestial body), while vortex repulsion - with area A (square of 
radius of celestial body). 
 

m= 4/3*π*r 3*d 
  0.5A= 2*π*r 2 

 

As we remember, in DesCartes’ philosophy a planet finds its place in the vortex according to its 
volume and surface area. The concept of mass comes with Newton and is too complex in certain 
cases according to Mathis. So we need to use the radius of our first example- Mercury (rM  )- as a 
proportionality coefficient when analysing the orbits of other planets. Omitting for our draft 
analysis the effect of densities, 
 
  m/ 0.5A =  0.67*rM  
 

GMm/R2 = BMm/R3 + [AM]*K*0.5A*3.8*0.67r/ r M*R5/3 

 

We can calculate the value of K  for an overall check of our reasoning (table 2). 
 



 
 

Interaction 
between the 
Sun and 

 
F2 

 
F3 

 
F4 

 
K 

Semi- 
major 
axis, m 

Mercury 1.96 * 1032  5.88 * 1031  1.94 * 1037 * K 7.1 *10-6 5.79*1010 
Venus 8.39 * 1032 2.34 * 1031 1.05 * 1038  * K 5.8 *10-6 1.07*1011 
Earth- Moon 
system* 

 
5.56 * 1032 

 
1.13 * 1031 

 
9.98 * 1037  * K 

 
5.4 *10-6 

 
1.47*1011 

Mars 2.46 * 1031 3.23 * 1030 5.31 * 1036  * K 4.0 *10-6 2.28*1011 
2 Pallas ** 2.45 * 1027 1.8 * 1025 8.46 * 1032  * K 2.9 *10-6 4.14*1011 
4 Vesta 2.75 * 1027 1.9 * 1025 8.40 * 1032  * K 3.2 *10-6 4.33*1011 
10 Hygiea 7.81 * 1026 5.0 * 1024 5.80 * 1032  * K 1.3 *10-6 4.70*1011 
Table 2. Speculative forces for two body problems. 

*- for the Earth- Moon system the perihelion value is used, **- the value of K  was influenced 
by the fact, that orbit of Pallas has inclination 

 
Similar results have been obtained by calculation with moons of Jupiter and Uranus (table 3.) 
 

Interactio
n between 
the Jupi-
ter and 

Semi- 
mayor 
axis, m 

 
Маss, кg 

Half of 
surface 
area,м2 

 
F2 

 
F3 

 
F4 

 
K 

Io 4.21*108 8.93*1022 2.1*1013 9.5*1032  6.3*1030  2.62*1038

*K 
7.1*10-6 

Ganimede 1.07*109 1.48*1023 4.35*1013 2.46*1032 6.56*1029 9.41*1037

*K 
2.6*10-6 

Interactio
n between 
the Ura-
nus and 

       

Miranda 1.29*108 6.59*1019 3.5*1011 3.44*1029 3.5*1026 4.35*1034

*K 
7.9*10-6 

Oberon 5.83*108 3.01*1021 3.6*1012 7.7*1029 1.7*1026 7.86*1034

*K 
9.8*10-6 

Table 3. Speculative forces for two body problems. 
 

Despite the significant differencies of masses of celestial bodies, the calculation shows, that we 
are able to understand the machinery of heavens. For fine tuning the concept, principles of 
aerodynamics should obviously be also applied. Investigations of the Allais effect also show that 
the pendulum reacts a half an hour before and half of hour after the real event of solar eclipse. 
This may mean that field effects are present.  
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