EINSTEIN’S NOBEL PRIZE AND CONSEQUENCES

Bert Schreiber
4519 Holly St.
Bellaire, TX 77401-5802
charlesbert_99@yahoo.com

PART 1

This paper is about Einstein’s Nobel Prize and the actual end results. Only the briefest essential details will be given. Alfred Nobel of Sweden set up a trust fund so that a gold medal and a monetary reward could be given to persons in various fields. The first prizes were awarded in 1901. This paper is on the one given for physics. From researching the available documentation some of the findings (side issues) are included to set the records straight.

About the middle of October of each year, there is announced, from the nominees selected, who will get the prize. A ceremony is held on December 10 that is the anniversary of Nobel’s birthday in Stockholm, Sweden to award the diploma, medal, and money. Who gets the prize and why is by a presentation speech. Then the king, or a prince in the past, presents the medal. Later the recipient gives an acceptance speech.

You can go to a web search engine; the author used GOOGLE, and tries to find out all about who got what etc. The author did so using the key search words EINSTEIN NOBEL PRIZE. One would think from reading various references, especially using a search engine on the web that the prize for 1921 was awarded to Einstein for his work on the photoelectric effect. Then the problems started. The author could find no one site that had enough information to work with. Furthermore, unless something has been posted, it cannot be found. Then, you have to know and use the correct key words, especially spelling (GOOGLE will correct a few of them, i.e., an alternate search), in the search. Then, too many sites have just the generic discussion, i.e., Einstein wrote three papers etc. The vast majority of the sites have too much vital minutiae missing. Then, you come to realize that there is so much false or erroneous information that it becomes extremely difficult to find the truth. As the author expanded the search, the overall “picture” became more confusing; at least it was to the author.

What follows is the development and how eventually most of the information was finally put into some resemblance of veracity. Reading various books showing the Nobel winners, you will read under Physics, 1921 A. Einstein. There are just a few things wrong. He was only the final nominee, but the award itself was held in abeyance.

He did eventually get that diploma, gold medal, and the money and how is the fundamental basis for this paper. The diploma has a brief description for what the prize was issued. It says – “for his services to Theoretical Physics, and especially for his discovery of law of the Photoelectric Effect”. The theoretical physics was not for any Relativity, but on other related matters such as the Brownian Movement.
The more the author researched this matter, the harder it became to find the true facts. The author then resorted to the Einstein Archives in Israel to try and find some of the minutiae the author was seeking. However, the main Einstein archives located in Israel are not collated so as can be researched for any specific detail. To actually find any specifics requires mostly a trial and error search. The author asked questions to the Einstein Archives some of which were answered and some were not. The author had other comments and statements that elicited responses from the archives that the author was in error. As a last resort, the author finally contacted the Swedish Nobel sites and they could only provide partial answers at the start. So here is what the author was finally able to piece together on this weird situation.

Einstein wrote 3 papers all published in 1905 in the German scientific journal Annalen Der Physik that resulted in his nomination and later award.

The first was (English titles) On a Heuristic Point of View Concerning the Production and Transformation of Light. In its opening he specifically used the following in order: ray – energy quanta – move without dividing. In this paper occur the remarks on the difficulties of explaining the Photoelectric Effect. Nowhere did he use any “bundle” then or even later. That addition by person unknown plus totally ignoring what he actually wrote has resulted in many misconceptions and diverted the truth into later falsities. Prior to 1900 it had been shown by experiments that a ray of light from line spectra had a finite wavetrain length. From this length, the emission time it took for the electron to produce this wavetrain could be easily calculated. It definitely was not any spherical wave front (requires dividing) and it could only be a unidirectional ray moving in one direction. That ray’s other parameters were never pursued, i.e., how long, wide, shape etc. That emission time was later measured by other experiments, the first in 1913.

The second was On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular Kinetic Theory of Heat. This was actually on the Brownian Movement that Einstein noted as: - the so-called Brownian Movement. (As from the approved translation in AECP.)

The third was (and most believe it was first) On the Electrodynamics of Moving Bodies. In this he discusses light pressure and the Photoelectric Effect is barely mentioned. The majority of this paper is what then came later to be known as “Special Relativity” and the paper “re-named”. Contrary too many web sites and references his equation E = mc^2 is not in this paper. It is shown (and up to at least 1911) as E = L/c^2.

To clarify matters, Einstein was not the first to propose the connection between mass (matter) and energy. It was Sir Isaac Newton who first set that forth. There are too many others to list. F. Hasenöhrl in Annalen der Physik (25 October 1904) in his paper set forth that it was E = m/c^2.

It was announced in October of 1921 that he was selected from the nominees as the prizewinner. So, looking up that year one finds he was only selected, but the award itself was held in abeyance. It was entirely possible that the award might be withdrawn so Einstein was not informed of his 1921 nomination.
At the award ceremony held in 1922, Dr. S. Arrhenius, Nobel 1903 in chemistry, made the presentation speech. The German minister N. Nadolony accepted (verbally) the award for Einstein, as Einstein was not there. He was in Japan and could not (or would not) go to the ceremony. The medal, diploma, and the money were later delivered to Einstein.

Then here is a bit of trivia. Two countries fought over whom would accept the medal for Einstein. He held dual citizenship as he was a Prussian (German) official and also a Swiss citizen. The money a sum of 121,592 kronor (roughly $32,000), Einstein gave to his ex-wife Mileva as part of their divorce agreement.

The author raised the question (comment) whether Einstein ever thanked the Nobel Committee for his award. On November 9, 1922 the Nobel Committee made the final decision to award the prize retroactively for the previous year. On November 10, 1922 a telegram was sent to Einstein’s Berlin address. On November 14, as Einstein was in Japan, his secretary-stepdaughter sent a letter that says “- - - in the name of my father - - -” Einstein sent a letter to Arrhenius dated January 10, 1923 that apparently gave his thanks etc. No copy exists in the Einstein Archives. Arrhnius replied in a letter that is thanking Einstein for the “amicable letter of January 10th “ (1923) that he received in February. Note that most of the correspondence in 1921 and 1922 was handwritten and so no copies are available, at least in the Einstein Archives.

Now what about the acceptance speech? Einstein was in Berlin in the spring of 1923 and a time and place for the delivery of the obligatory Nobel speech was agreed upon. This was given as a Nobel lecture at Goeteborg, Sweden, during the meeting of the Scandinavian Society of Natural Science on July 10, 1923. All well and good; “legal” requirements met?

During this particular speech titled: Fundamental Ideas and Problems on the Theory of Relativity, he never mentioned that his prize was on the photoelectric effect and the other physical theories or anything even remotely connected to his diploma. All he expounded on was on Relativity (parts of that third paper). The scientists and newspapers complained.

According to the archive records, Dr. Arrhenius who was the Chairman of the Nobel Committee sent a letter suggesting two places and times to make his speech. In this letter there is as follows: “- it would be wonderful, if you gave thereby a common-understandable lecture. You can select the topic, are reassured (safe) that one would be extremely grateful for a lecture on your relativity theory …”

The wording leaves much to be desired, especially, ”You can select the topic,” That Einstein did and it was only on Relativity and nothing else. When the “legality” of his speech arose, Arrhenius published a statement acquitting Einstein of any default. While A. Nobel required a speech on the subject of the prize, the specific requirements did not require that speech to be given at the ceremony. The fact remains; Arrhenius overrode Nobel’s rule (wishes).

So, for all practical purposes, Einstein had complied with the rules and got everything fair and square. The author is not going to quiz the Nobel Committee to see when they revised the rules to be more specific (lecture on what your diploma says) on this acceptance speech. But, from that point on, war years excluded, all the winners have stuck to what was on their diploma, at least to date, and the author assumes it was given within the 6 months time frame.
Another bit of trivia is that, apparently from all the brouhaha, that Arrhenius wrote in 1923, “About one-third of the recipients of the Nobel Prize did not fill the formal rules, set by the Nobel Committee, to deliver the speech within 6 months after the prize was awarded. However, no complaints were made.” (By Nobel committee assumed.)

Here is a bit more trivia. William Röntgen, was the first Nobel Prize winner in 1901 for his discovery of X-rays. Shy about public speaking and the publicity that his work had generated, he literally sneaked out of Sweden to avoid having to give the required Nobel Lecture. Rather, Roentgen managed to substitute his single Physical-Medical Society talk later. Further details as to when, where, and title immaterial.

The next question that is/was especially raised by the establishment was why no later prize on Relativity? Again, Arrhenius in 1923 wrote Einstein: The diploma did not take into account the importance of Einstein’s relativity and gravitation theories that may be verified (the theories, not the importance) in the future.

According to the Einstein Archives and the author has been so informed, Einstein never mentioned or implied that he would have desired another Nobel Prize for this Theory of Relativity. That apparently, was the public relations hue and cry of those who followed his theory, who wanted one to be awarded. Any reader can do their own research to find out why from 1910 until 1921 nomination yes, awarded no, and anything after 1922 for Albert Einstein.

However, too many complaints (apparently before and after his prize) and infighting among the establishment precluded Einstein ever getting another prize, especially on Relativity. That is not mundane to this part of this paper.

This essentially ends the story on Einstein’s Nobel Prize. The author has done the best as possible to present the facts from what was readily available.

From a side research on how Einstein’s famous \(E = mc^2 \) equation came into existence and he was so noted for, is another story. From 1911 onwards the records become fuzzy. The first time he actually wrote that equation was in a manuscript written during 1912-1914 that the author copied from the approved English translation with the title: Manuscript on the Special Theory of Relativity. It appears on page 41 as:

\[
E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}
\]

This is the TRUE equation and not the current shorthand one.

On December 26, 2002 while at the library the author was reading SCIENCE NEWS issue of December 2. On page 396 was the Photostat of the original handwritten page. The caption said that it was in 1912. That is the trouble with translations, though they might mean well, do a revisionist treatment. The actual equation is: \(E \ L = \) right hand side of above. Remembering he used L, then (the author can only guess here) from Hasenöhrl’s version, that he struck out the L, inserted the E and inserted (inverted) the \(c^2 \) and replaced the original L with the m. The bottom right is for the relativistic corrections. (Also known as the Lorentz factor or operator.)
In 1914 he has (K = kinetic energy): \[K = \frac{mc^2}{2} \] This is false but not for here.

Therefore, every reference of any nature that has his final equation is or was in or even as some claim implied, in the third 1905 paper or later papers up to 1912 are dead wrong. Exactly when it was first published is, apparently, lost in history. This would require a very long detailed research of the archives. At this point it now immaterial. It was in definite use by 1918-1919 as it was required for Einstein’s work on the gravitational bending of light by the Sun. And that is another story (World War I saved his hide and permitted him to finalize and **correctly apply** his famous equation) of controversy that is still being argued over to this day. That light could be bent by gravity had already been postulated and the equations written decades before.

There are many illegitimate claims that others had it specifically written as \(E = mc^2 \). Such are outright distortions. Einstein **was the first** to have it in this exact format, not if such and such was changed it could be or whatever etc.

There is another myth or misconception perpetrated by the great unwashed. Einstein did not design or even have anything close, for an atomic bomb. The author has a reference by a well-known scientist(and by many others) in a book of his who wrote (sic): “Einstein’s \(E = mc^2 \) was not needed to design an atomic bomb. The bomb would have been made even if this equation did not exist.”

In case this is not believable, work on radioactivity starting around 1900 showed that heat was given off by the radioactive elements when they decayed and their mass (weight) changed. Simply, the missing mass must have been transformed into energy and/or radiation. Some of the original mass was given off by particles, but that could not account for all of the original mass when included. Radium was noted for making the glass vials it was contained in very hot.

So there is absolutely no misunderstanding, in reality (even if his equation was correct) it cannot be used as there is no **standard or constant of energy mass** that can be inserted into this equation. What is used is the weight of the elements that is close enough for practical purposes. Trial and error (but no allowance for any error! You, it actually happened, ended up dead.) methods were used to find criticality for the Atomic bomb’s core. But, again, that is another story and can readily be found in history books.

PART 2

But there is yet more to come on what came after 1905 on the Photoelectric effect that were in papers by Einstein and others published after then.

R. Millikan (Nobel winner) in 1915 set up an experiment to prove Einstein’s equations’ results. One such proved was Einstein’s famous predicted “work function” for the Photoelectric Effect. The results were published in *Physical Review*, vol. vii, p. 262, 1916. [R. W. Ditchburn’s *LIGHT* on page 540 shows the apparatus etc.]

To understand what now follows, we must go back to before the turn of the century to late 1800s. H. Hertz (1857-1894) discovered the Photoelectric Effect in 1887. Many scientists then tried to reconcile Max Planck’s quantum of energy to the effects found from the Photoelectric Effect and failed.
P. Lenard, *Uber die lichtelektrische Wirkung, Annalen Der Physik*, Vol. 4, p. 149, 1902 has one of the earlier photoelectric experiments. He showed the conflicts between Planck’s Black Body and the wave/particle nature of light, i.e., intensity increased did not increase ejected electron’s energy, frequency function (was less than 100% for ejected electron and varied between metals). This is the inkling of the work function etc. Einstein had read this and other such papers in order for him to solve the multitude of conflicts (problems) associated with the observed effect’s.

A. Michelson (1852-1931), Nobel winner, had developed a new type of interferometer in 1881. It permitted very precise measurements of lengths down to billionths of an inch using light waves. One of its early applications was to measure (if it existed) how long was the wavetrain of line spectra. Doing so using various lines, especially the two yellow sodium lines, showed that the light “rays” were indeed of a finite length.

The yellow 5890 Angstrom (each cycle was about that number x 10^{-8} cm in wavelength) line was about 480 cm long. Other lines had shorter or longer wavetrain lengths. It was possible to measure this wavetrain length as the interferometer quits working when the arms’ lengths of the interferometer exceeds the wavetrain length. Most important was that this wavetrain length was not a direct function of frequency. Two close frequencies could have vastly different wavetrain lengths.

This information can no longer be found. It has been, for all practical purposes, censored out of all text, reference, and encyclopedias. Why? That proven fact completely destroys the current establishment’s theories on light, especially their current (and totally absurd) massless photon concept. That light has mass and can exert pressure was proven by a laboratory experiment in 1901 and many times thereafter by other experiments.

Einstein formulated an equation that set forth the time an electron oscillates to produce this light wavetrain. To date, efforts to find the document and date has resulted in failure. This time to do so is called the emission time.

Then the wavetrain must cause an electron to be ejected due to one of the photoelectric effects that cannot take a shorter time under normal conditions than its emission time. That means when the wavetrain ray hits the surface, then some of the wavetrain’s energy (the energy in first few cycles in same) then excites the electron, whose “free up” energy is the work function to remove the electron from its orbit. Then the remainder of the energy in the wavetrain then causes the electron to be ejected at a fixed maximum speed. Two wavetrains of very close frequency can and do have different wavetrain lengths. Therefore, the speed of the ejected electron remains the same for a specific frequency, but the ejection time varies and is not a function of the frequency alone. This significance was apparently overlooked by one and all. The author can only surmise it was unfortunately written off as experimental error due to the state of the art at that time or some unknown other cause.

Apparently the first experiment to measure this emission delay time was done by E. Marx and K. Leichtenecker and published in *Annalen Der Physik* 41, starting on page 124 in 1913. (Note that date.) It showed that the emission time was less than 10^{-7} seconds and was the best value that could be done for that time under the state of the art available. It was repeated by E. O. Lawrence (Nobel winner and inventor of the Cyclotron atom smasher) and J. W. Beams as published in *Physical Review* 32, pages 478-485, *Element of Time in The Photoelectric Effect*, 1928.
Their results were the delay was less than (assuming for the frequencies used) 3×10^{-9} seconds. [These two references were finally located in October of 2002.]

That too has been censored out of all current sources. It only appears in two (that the author knows of) current published sources that gives it only as 10^{-8} seconds (average) value and nothing else. That 1880’s $+\text{ value}$ for the sodium line is 1.6×10^{-8} seconds from the mechanical calculation, i.e., wavetrain length divided by the length light goes in one second. Therefore, the mechanical measurements done prior to 1900 were verified by the physical experimental measurements and his equation doubly proved beyond any doubts.

And once again, excluding those two entries, every thing concerning his equation and experimental proofs has been censored out of all current references of any nature. The only place the author was able to find his equation (about 1953) is in the book LIGHT by R. W., Ditchburn still in print and available. In it he mentions that it was proved, but unfortunately not when and where etc. See pages 538-608. Equation is at bottom of page 576 17(80). That is why it took the author almost 49 years to find the information that the author did later and then only because of the Internet and search engine(s).

Any reference having Einstein using the word “photon” before 1927 is FALSE. The word was not coined until 1926 by G. N. Lewis.

Excluding gravity, if there were some fundamental equations that would explain the vast majority of the physical world they would be: Planck’s equation for the energy in light. The de Broglie wave equation. Einstein’s oscillation time equation. Einstein’s (finalized) energy = mass $(E = mc^2)$. The author and at least three others using the Planck equation and mc^2 calculated the quantum of mass.

When $E = 1\ h$ and substituted in and re-written, it becomes $m = h/c^2$ for the mass required to be transformed to energy, i.e., the quantum of mass or the source of mass.

That is, what is the smallest mass that would produce a light wavetrain that is only one cycle long and oscillates one cycle/sec and has one h of energy? That turns out to be 7.3726×10^{-48} grams. Then if this is so, then there must be some quantum of length and time. They too were predicted, even their numerical values by others as 1.3×10^{-13} cm and 4.4×10^{-24} sec respectfully (but no one including those who did so [G. Gammow (1904-1968) and W. Heisenberg (1901-1976)] actually believed it themselves) and can be found. Planck’s equations says there must be some quantum of energy and it is known as Planck’s Constant (h) and only occurs in whole number multiples of itself, never in fractional parts.

What does all of this mean? It means that Einstein’s Relativity (all of it) is false. It cannot exist when the Universe’s constituents are of a quantum nature. Therefore, Einstein inadvertently destroyed, in the end, his own theory. His oscillation time equation values used must be in quantum or whole multiples of values. WHY?

A cycle in these wavetrains cannot have any fractional value for h, nor such that there can be a partial cycle having less than h etc. Every wavetrain has a full and whole number of cycles in it and with two exceptions each cycle contains one or more whole numbers of h’s. It has a specific start during the first quantum of time and stops during the last quantum end to its production. Time then goes in quantum JUMPS and is not continuous, i.e., current mathematical “points”.
That alone destroys any Relativity, i.e., simultaneity exists etc. Measuring simultaneity is the hard part.

Relativistic effects known since antiquity, result in the difficulty of making measurements on moving masses etc., do exist, but the actual effect does not as it is only apparent. This was expanded to absurd and impossible results by Einstein himself and others as to other matters. That came about because that one word “apparent” was quietly dropped and made the statement “real”. So, he was wrong in going for broke with his Theory of Relativity that ended up nonexistent. It was his photoelectric works that were the most important.

And no, his famous \(E = mc^2 \) equation was not his alone. He only finalized the works of many others dating back for over 50 years. And anyway, it is not dimensionally correct as it, except equations into its own terms, cannot be legally equated to any other physical equations. The author and the others who did this by equating Planck’s to Einstein’s did so illegally and cheated to get the answer. The dimensions are too many and wrong besides. \(E = m-L^2-v^{-1} \). Has that EXCESS \(\nu \) frequency. Planck’s is: \(h = m-L^2-t^{-1} = mLc \text{ OR } mL^2\nu \). \(1/t \) is frequency. See NOTE [1].

NOTE: Planck’s Equation is \(E = h\nu \). Therefore \(h \) itself must be = mL. Then what is frequency? Just a number or the number of counts that is dimensionless. This turned out to be so as that \(L^2 \) is a missing fundamental constant and is a kind of TIME (Sweep Area) that each particle carries with it at all times, or each particle carries its own clock that ticks at (sets) the one second of time. Whether or not the one second exists has been subject to argument. Therefore, the one second exists and is an entity. End of argument. Before any reader says the author is wrong, then read what now follows.

Einstein set up his Relativity Theory based on using light through free space as the communicator. Then Einstein wrote that: The apparent measured mass (or whatever) increased (time and length decreased) with SPEED. This is distorted by the current establishment to a double lie: Mass increases with velocity. Velocity (mathematical concept vectors) is not speed (scalar). Apparent, left out, is not real. The rest of his postulates are now immaterial.

But, this apparent measured effect disappears when the light is sent through a medium other than space, i.e., say an optic fiber link. Consider two light sources moving through space and the measurements made. The apparent measured effects will be found. But, connect those two sources with a fiber optic connection and the apparent measured effects no longer exist. So, how can there be those effects (and they were only apparent anyway) existing and then not existing because you touched that fiber to the sources? Absurd. The effects were never real in the first place. Such claimed results were based on false or deliberately limited postulates, grossly misapplied mathematics, and too many other false facts to list.

That apparent measured entity was an artifact due to the difficulty of using light through free space as the only permitted (by Einstein) communicator. Furthermore, the apparent measured values can easily be changed back to their real at rest to laboratory (frame of reference) values with no problems.

Simply, at the sake of overkill, if a shutter was placed at one end of that fiber, then when it is closed Relativity exists (as per Einstein) and when the shutter is open, Relativity becomes nonexistent.
So, how can just opening or closing that mechanical shutter (or touching the fiber and then not touching the fiber) cause anything externally (that frame of reference or even another somewhere else out in space) to change in reality?

This apparent vs. real is of extreme importance. Relativistic effects likewise apply to using sound in place of light. There is the well-known Doppler Effect that says if the source moves the measured frequency changes. Moving the source (works for the receiver likewise) towards the receiver increases the measured frequency. Moving the source away decreases the measured frequency. In this case the medium is the air and not space. The following explains how these *existent* (existing as measured values) apparent measurements can be fully explained and ELIMINATED.

Take a common garden hose to be used in place of the fiber optic connection. Now one person gets on each end at some length apart shorter than the hose length. One whistles a fixed frequency at his hose end; the other listens by placing the other end of the hose near one ear. The receiver hears the exact frequency through both the hose and through the air in the other ear. But, the time it takes for the signal to first reach the other is different. The receiver hears the through air sound before the through the hose sound.

Now the first inserts the hose end inside his mouth and vocalizes a note with his mouth slightly open while moving away from the receiver. The receiver hears a lower frequency through the air, but the frequency through the hose is identical to the source. No relativistic effects! Again, the time is slightly longer through the air (and even slightly longer than in the first example), but the **time through the hose** remains the SAME!

Now for the final nail in the coffin of Einstein’s Relativity. It makes no difference when the hose itself is then moved independently of either the source or receiver. The air inside the hose acts as it is at a point of ABSOLUTE REST! Therefore, either of the persons can determine which one is moving and if so, what is the speed and direction of either one to one another. Further minutiae skipped as to how this is actually applied in reality.

For radio wave sources, the connection would be a wire conductor. Through the air is the APPARENT when measured and through the hose is the REAL when measured. The Classic Doppler (cosine function) relativistic effects remains intact (This is EXACTLY what the Lorentz Transformation Equation actually says when radiation is concerned. The “numbers” under the bracket are actually the cosine of an angle, i.e., say cos α.) and Einstein’s Relativity ist KAPUT! Further minutiae skipped.

In case this is not clear. Replace the Lorentz Transformation Equation with “cos α” where ever it appears. Then you can predict what the APPARENT relativistic measured value will be for **angular direction** speed **approaching** (no mass can go to the speed of light) that of light or reverse it to change the APPARENT measured back to its real at rest frame of reference, i.e., as measured in the laboratory if the source was not moving.

Go to reductio ad absurdum. You point a camera at a person and that person only apparently exists, as his image, the light from, is not hitting the film/CCD. Open the shutter and he then exists and his image is recorded. Now use your own eyes opening and closing them. Yes, there are many people who believe if you can’t see something it no longer exists. Guess that goes for smelling them also.
But that is purely a philosophical and the semantic meaning of words arguments and has no place here. In fact, M. Planck followed this belief to his death, but he said only if you could measure something does it exist. See NOTE [2].

Two of the more famous results from Relativity were thermofusion and Gravity Waves. Contrary to what has been foisted off on the public, not one single thermofusion experiment has worked. Every one has failed and that includes the H-bomb! Every attempt to detect Gravity Waves has failed. They fail because they do not exist as Relativity is false.

Again, the media has deluded (outright lied to) the public into the nonexistence of Cold Fusion. Sorry, it exists and is so recorded in the approved scientific journals SCIENCE and NATURE. Articles in SCIENTIFIC AMERICAN have this specific information.

For the record: It was Zeno (Galileo later) that set forth all motion was relative. It was Newton in 1704 who first proposed that mass and energy were interchangeable and that light could be bent by gravity.. It was Von Soldner in 1801 who first calculated the bending. It was W. Kaufmann in 1901 who postulated and experimentally proved the “measured” mass increase with velocity.

The invariance of the measurement of the speed of light (Maxwell and Lorentz) was also known long before Einstein. So Einstein borrowed all of his postulates and not one single one was new or his own.

Truth is stranger than fiction, and with that, this paper is closed.

EPILOG:
Just a very few days after the author completed this paper, the author found out that the magazine AMERICAN SCIENTIST had published an article in 1982 that had about 95% (plus even more minutiae details) of what it took me so long to find on Einstein’s Nobel Prize. The author contacted them and they faxed the author a copy. The title is: How Einstein got The Nobel Prize by Abraham Pais (now deceased). They are now archiving their back issues for web searching. I have suggested that they give this one a high priority.

NOTE:
[1] This is as originally written. Later it turned out that they are equal to one another by breaking the symbols used apart that is not for here.

[2] In case the reader doesn’t get it as applied to Relativity, what happens if you were doing the shutter experiment and then with your eyes open and then closed? Then no experiment what so ever, just open and close your eyes?

SPECIAL THANKS:
The author wishes to thank the following for their time and efforts who contributed to helping find the items that were buried somewhere and were extremely difficult to locate in order of responses or posting on the web the information.
Dr. R. G. Keesing, University of York, England
Professor Anders Barany, Nobel Museum, Sweden
Dr. Michael Richmond, Rochester Institute Technology (web site)
Jaro Kopernicky, Ontario, Canada
Dr. Robert A. Herrmann (web site)

Original December 2003

Revised December 2006