The marked differences in individual response to dietary factors and in particular the recent documentation of the effect of "single nucleotide polymorphisms" (SNPs) with metabolic imbalances demonstrate the importance of the gene-dietary interactions studied by nutrigenomics. (see :Note 1.) Hence the emerging field of nutrigenomics initiate to help us to understand the basis of better personalized dietary guidelines (tailoring diet on the basis of genotype) to select nutrients.

The scientific new understanding of nutrigenomics has led to the increase of commercial development of nutraceuticals and functional foods that can be an opportunity to modify negative health effects, of individual genetic profiles, bringing the field to the “food/genome” junction.

Despite the future promise of nutrigenomics to personalize diet, today there is skepticism whether it can truly bring about meaningful modification of the risk factors connected to chronic diseases, it is evident that the lack of applications is mainly due to a diffuse misunderstanding of people about the bidirectional interactions between genes and diet.

However, the scientific evidence concerning diet–gene interactions offers today significant opportunities to improve public health by enhancing a clear understanding of the importance that assume personalized diets to reduce the risk of common polygenic diseases coming from the disfunction of n-DNA -SNPs and especially from mt-DNA, as a molecular clock in self-organization of living activities. Several multidisciplinary research of Nutrigenomics currently underway in the Europe and abroad in several nations (U.S.A., Canada, Israel, Japan, New Zealand and Australia) will further help to validate nutrigenomic concepts. In spite of the worldwide research on Nutrigenomics, quite all those specialist studies of (genomics,proteomics,metabolomics..ect.) are developed in a “close innovation system” based on several academic or industrial specialist researchers, that have not the goal of putting nutrigenomics in an “open innovation system”, involving the general public, to enhance the understanding of the importance of new concepts related to the fields of nutritional genomics, in order to advance in the personalized control of the quality of food intake and for getting a better wellness and fitness and health of individual life.

Those benefits should be obtained by growing up a NUTRIGENOMIC KIC (Knowledge Innovation Community), having the fundamental goal to translate the scientific findings of advanced studies in nutrigenomics into a manageable, appropriate target for the food and agricultural SME’s industry, and also to the target the food consumer. In particular, the goal of NUTRIGEN-KIC is focused on educating the public to go over the traditional concepts and popular theories based on the “quantitative” calculation of diets in “Calories”. In that traditional way of dietary concepts, people link the weight and health control to an old view of thermodynamics, losing as a consequence, the importance to take in appropriated consideration the “quality of food”, so that people forget to learn about the importance of the role of genes’ interaction on the
metabolic reconstruction of proper life.

Therefore the NUTRIGEN-KIC will improve a cognitive change from a mechanical point of view to a better understanding of life science; in fact, this conceptual change of mentality evidently is a real need for improving the knowledge society in Europe to get a better wellness-fitness and especially to avoid chronic diseases.

In synthesis, the NUTRIGEN-KIC Program would enhance the worldwide public understanding of the key concepts of nutrigenomics and nutrigenetics, through offering gene-tests directly to the public in a context of Community Based Participatory Research, to gain a deep consciousness for a better nutrition and diet to health, opening in that way a new dietary concepts and guidelines based on nutrigenomic sciences, in order to favour a more useful community's planning for a reduction of chronic disease risks and also for pondering the opportunity to guarantee the quality of the agricultural and industrial production of food. (see: Note 2.) To obtain the goal of a diffuse “UNDERSTANDING NUTRIGENOMICS” can be a good strategy to launch an International Cooperation networking activity (see for instance: EU-COST Action in http://www.cost.esf.org/) to improve an open and flexible framework named NUTRIGEN-KIC (http://www.wbabin.net/manzelli5.pdf) able to popularize the processing, transmission, storage, retrieval, management, usage, and exchange of information and knowledge about nutrigenomics.

The added value of this NUTRIGEN-KIC will be derived by the impact of the action on the fundamental aspects of a pre-competitive Knowledge Based Bio-Economy (KBBE) development, focused on bettering SME's innovation, and coming from the dissemination outcomes & achievements driven by improving the guidelines of nutrigenomics to help in personalizing dietary nutrition world wide, and by working to popularize the knowledge of the interaction of genes with diet to avoid the risks of common food-intake diseases aiming to help a self-protection consumers.

Biblio: http://www.creativehealthinstitute.com/articles/NutrigenomicsOverview.htm
Note 1 from: http://las.perkinelmer.com/content/snps/genotyping.asp

http://science.marshall.edu/murraye/341/Images/416px-Dna-SNP_svg.png

Single nucleotide polymorphisms (SNPs). A SNP is a single base substitution of one nucleotide with another, and both versions are observed in the general population at a frequency greater than 1%. Human DNA is comprised of only four chemical entities, e.g. A, G, C, T, whose specific chemical order is the alphabet of the genome. An example of a SNP is individual "A" has a sequence GAACCT while individual "B" has sequence GAGCCT, the polymorphism is a A/G. Recent work has suggested that about 10 million SNPs that are common in human population are not inherited independently; rather, sets of adjacent SNPs are present on alleles in a block pattern, so called “haplotype”. Many haplotype blocks in humans have been transmitted through many generations without recombination. This means although a block may contain many SNPs, it takes a few SNPs to identify or tag each haplotype in the block.
To reach the goal of personalizing medicine and nutrition, new experimental strategies are needed for human study designs. A promising approach for more complete analyses of the interaction of genetic makeups and environment relies on Community-Based Participatory Research methodologies. CBPR's central focus is developing a partnership among researchers and individuals in a community that allows for more in depth lifestyle analyses but also translational research that simultaneously helps improve the health of individuals and communities.

PAOLO MANZELLI pmanzelli@gmail.com 07/07/09/FIRENZE