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Abstract:

The primary objective of the current investigation is to calculate, on the basis of ballistic 
velocity of light in vacuum, and then to compare the computed numerical values of anomalous 
precession of planetary perihelia to the reported observational results.  In particular, with regard
to the anomalous advance of Mercury's perihelion, a value of  44.66  seconds of arc per century
is obtained and deemed to be satisfactory and close and likely to be made much closer to Simon
Newcomb's reported result of  43  seconds of arc per century, either by carrying out further 
more precise calculations, or by searching for any possibly overestimated perturbation effects 
by about 1.5  seconds of arc or so in the total value of planetary perturbations of about 532  
seconds of arc per century for the anomalous precession of Mercury's orbit.
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Introduction:

Invigorated and emboldened by the remarkable success of his previous calculations in the discovery of 
the planet Neptune, Urbain Le Verrier embarked, almost immediately, on carrying out a long series of 
similar calculations that, eventually, led him to predict the existence of a hypothetical planet named 
'Vulcan' between the Sun and the planet Mercury.

But, this time around, the predicted planet never materialized.  And moreover, the portion of the sky, 
between the Sun and Mercury, is just too small and too clear to conceal anything as big and bright as 
the hypothetical planet Vulcan.   

Nevertheless, from the standpoint of celestial mechanics, Le Verrier's calculations are quite robust and 
generally correct.  And, in fact, their numerical result is off only by about 10%  from the currently 
accepted result with regard to the anomalous advance of Mercury's perihelion. 

Initially,  Le Verrier obtained, in 1859, an anomalous precession of the orbit of the planet Mercury with 
an amount of about  39  seconds of arc per century.  But that preliminary result was updated, in 1895,  
by Simon Newcomb, to about  43  seconds of arc per century.

At first glance, an anomalous advance of  43  seconds of arc per century, in the perihelion of Mercury, 
appears incredibly insignificant.  And it would have, probably, been written off as a completely 
insignificant telescopic or personal-equation error, if it was obtained through direct observation of that 
inner planet of the solar system.

However, Le Verrier inferred Mercury's anomalous precession, indirectly and statistically, from 400  
meridian-circle observations, taken at the Paris Observatory between 1801 and 1842;  and from 24 
timings of contact points during 12  transits of the planet Mercury between 1697 and 1832  [Ref. #1]. 

And precisely because it's based upon those two relatively high-quality sets of Mercury's observations, 
the above tiny amount of precession is extremely stable and difficult to explain away by adjusting 
perturbation parameters, for instance, or by merely playing around with orbital elements of known 
planets.

Undoubtedly, the anomalous precession of Mercury's perihelion, in spite of its extreme minuteness, is 
one of the most famous and inspiring anomalies in the history of celestial mechanics. 

Since the publication of Le Verrier's report, many solutions have proposed, in order to explain away the
anomalous precession of Mercury's perihelion;  but here, for the sake of brevity, only a small but fairly 
representative sample of those published solutions, is included in the following list:



I.   The Planet-Vulcan  Solution:    According to this solution, by Urbain Le Verrier, the anomalous 
advance of Mercury's perihelion is caused by the perturbation effect of a small planet called 'Vulcan', 
which is assumed to be in orbit around the gravitational center of the solar system between the Sun and 
the planet Mercury.  The main objection to Le Verrier's solution is that a celestial body with Vulcan's 
mass must be, at least, as bright as a star of the  4th magnitude;  and therefore, it can't remain hidden for 
too long from observers, here, on Earth. 

 II.   The Zodiacal-Matter Solution:   According to this solution, by Hugo von Seeliger, the materials 
that cause the 'zodiacal light' can, in principle, have, collectively, enough perturbation effect to account 
for the anomalous precession of Mercury's perihelion   [Ref.  #5.a].  The published objection to Hugo 
von Seelinger's solution is that the total mass of zodiacal materials is just too small to cause the 
required perturbation effect.

III.   The Hall-Newcomb Solution:    According to this solution, in order to explain away the 
anomalous precession of Mercury's perihelion, the following Newtonian equation for computing the 
gravitational force  F  between two bodies with mass  m1  and mass  m2, respectively, and at a distance  
r  from each other:

should be replaced with this modified equation:

where  G  is the gravitational constant;  and  δ  has this numerical value:

as calculated by S. Newcomb  [Ref.  #12].   The chief objection, to the Hall-Newcomb solution, is that 
it is too artificial, theoretically unjustified, and bound sooner or later to create many daunting and 
thorny problems in other areas of celestial mechanics. 
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IV.   The Velocity-Dependent-Force Solution:     According to this solution, by Paul Gerber, if the 
unknown constant  k  is set to 6, then the Gerber's velocity-dependent-force equation should give, in the
case of Mercury's perihelion, an amount of anomalous precession  δ:

where  T  is the orbital period;  a  is the semi major axis of Mercury's orbit;  ε   is the orbital 
eccentricity;  and  k  is assumed to be equal to 6:

and where  c  is the speed of light   [Ref.  #5.b].  The main objection to Gerber's solution, in the 
published literature, is that a velocity-dependent force of gravity is too contrived and ruled out, from 
the start, by the complete absence of any gravitational aberration analogous to that of electromagnetic 
radiation from sources located outside the reference frame of the Earth-Moon system.
 

V.   The Curved-Space-Time Solution:    According to this solution, by A. Einstein, the field 
equations of general relativity give an amount of anomalous precession of Mercury's orbit  ε: 

where  a  is the semi major axis;  T  is orbital period;  e  is the orbital eccentricity;  and  c  is the speed 
of light in vacuum  [Ref.  #11].  The primary objection to the curved-space-time solution is that it's too 
drastic;  and  that the conjecture of space-time curvature, upon which it's ultimately based, lacks any 
specific physical mechanism;  and, in addition, it does not meet, epistemologically speaking, any of 
René  Descartes' criteria of truth and clarity at all. 

VI.   The Dicke-Goldenberg Solution:    According to this solution, an oblate sun can, in principle, 
account for the anomalous precession of Mercury's perihelion.  The main objection to the Dicke-
Goldenberg solution is that the Sun is almost perfectly spherical with little or no oblateness of its shape 
measured or observed at all.

VII.   The Mass-Energy-Conservation Solution:    According to this solution, by P. Marmet, the 
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mass-energy-conservation equation gives, in the case of Mercury, an angle of precession per century 
Df,  as calculated in accordance with this relation:

where  c  is the speed of light;  G  is the gravitational constant;  e   is the orbital eccentricity;  m'   is the 
Sun's mass;   and  r  is Mercury's distance from the Sun   [Ref.  #7].  The principal objection to the 
mass-energy-conservation solution is that the derivation of the mass-energy-conservation equation is 
somewhat arbitrary and seemingly devoid of any clear theoretical justification.

VIII.    The Mobile-Sun Solution:   According to this solution, by C. Tsolkas, the orbital revolution of 
the Sun, around the center of mass of our solar system, leads to the anomalous advance, in the 
perihelion of Mercury, by an amount equals to 43 arc-seconds per century   [Ref.  #6].  The anticipated 
objection to the Mobile-Sun solution is that although it might be possible, in principle, it's highly 
unlikely that Urbain Le Verrier and Simon Newcomb were unaware of the orbital motion of the Sun 
around the barycenter of the solar system;  unless, of course, a detailed review of their works, in this 
particular area of celestial mechanics, shows otherwise.

IX.     The Co-Gravitational-Field Solution:   According to this solution, by C. J. de Matos and M. 
Tajmar, the anomalous precession of Mercury's perihelion precession is caused by the Sun's 
cogravitational field, which is assumed to be due to the Sun's spin   [Ref.  #14].  So far no objection has
been advanced, in the published literature, against the co-gravitational-field solution, although it 
appears unlikely that the slow rotation of the Sun can produce any effect of this postulated sort.

X.     The Light-Carrying-Medium Solution:   According to this solution, by Tom Van Flandern, a 
light-carrying-medium surrounding the Sun, in which density varies with the Sun's gravitational 
potential, changes the motion of Mercury's perihelion, in accordance with this basic mathematical 
form:

where  BF  stands for the basic form;  μ   is the product of the gravitational constant and the mass of the
Sun;  a   is the semi-major axis of Mercury's orbit;  e   is orbital eccentricity;  and  n  is defined as:
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and where  P   is the orbital period of the planet Mercury.  The customary objection, in the published 
literature, to the light-carrying-medium solution is that the light-carrying medium, by its very defintion,
can be always assumed theoretically;  but it can never be detected by any practical means. 

However, the surveyed literature on this subject, makes no reference at all to one more possible and 
seemingly very attractive solution, for the anomalous precession of Mercury's perihelion and planetary 
perihelia in general, which can be advanced and based entirely upon the assumption of ballistic velocity
of light in vacuum.

The principal objective of the current investigation is to present a detailed analysis of this latter solution
and to compare predictions, computed on the basis of the aforementioned ballistic assumption, with 
observations as well as with predictions of other solutions with regard to the anomalous precession of 
planetary perihelia in general, and the anomalous advance of Mercury's perihelion in particular. 

1.   An Outline of the Ballistic Solution:

As seen from the moving reference frame of the earth, the straight line between the point of maximum 
approach, at which the planet Mercury is approaching directly the earth, and the point of maximum 
recession, at which the planet Mercury is receding directly from the earth, divides the orbit of the 
planet Mercury into two equals parts: 

1.   The near-side part, which starts from the point of maximum velocity of approach and ends at the
      point of maximum velocity of recession.  

2.    And the far-side part, which starts from the point of maximum velocity of recession and ends at the
       point of maximum velocity of approach.

And therefore, if it's assumed, as within the framework of the elastic-impact emission theory, for 
example, that light travels in vacuum at the velocity resultant of its muzzle velocity  c  and the velocity 
of its source at the time of emission  v,  then the planet Mercury, as observed from Earth, must appear 
to spend more time in the near-side half of its orbit and less time in the far-side half of the same orbit.

That is because the near-side half of Mercury's orbit starts from the point of maximum velocity of 
approach and ends at the point of maximum velocity of recession;  and accordingly, the value of the 
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velocity resultant of light, at the start of the near-side half, is higher than the value of the velocity 
resultant of light, at the end of the near-side half of Mercury's orbit.  And the reverse is true, in the case 
of the far-side half of Mercury's orbit, as seen by observers on Earth.

It follows, therefore, that all observations of the planet Mercury, in the near-side half of its orbit, 
necessarily lead to and  always fit in with an apparent orbital period of Mercury longer than its actual 
orbital period.  And the opposite is true, in the case of the far-side half of Mercury's orbit    

And since all transits of the planet Mercury occur in the near-side half of its orbit, the times of transit 
events, such as the start, the ingress, the egress, the end, as well as the duration of every transit of 
Mercury across the Sun, fit ultimately into an apparent orbital period of Mercury, which is always 
longer than its actual orbital period by an amount of time that directly depends on how far the observer 
is located from the planet Mercury.

And so, now, the important question, here, is this: 
  
How can the longer apparent orbital period, based on the timings of Mercury's transits, be employed, 
theoretically, to explain away Urbain Le Verrier's famous anomaly?

Qualitatively, the explanation of the anomalous precession of Mercury's perihelion, on the basis of the 
ballistic velocity of light, is quite easy and simple:

• Urbain Le Verrier deduced the anomalous advance of Mercury's perihelion from a sufficient 
sample of Mercury's transit data.

• The observational data of Mercury's transits lead to an apparent orbital period longer than the 
actual orbital period of the planet Mercury. 

• And because the apparent orbital period, into which the various stages of Mercury's transits 
necessarily fit, is longer than the actual orbital period of the planet Mercury, Mercury's orbit 
must appear to advance anomalously by a certain amount in the same direction as that of the 
orbital revolution of the planet Mercury around the gravitational center of the solar system. 

And so here, it is not, anymore, a question of whether or not the ballistic velocity of light can, in 
principle, explain away the anomalous precession of Mercury's perihelion in a qualitative manner; but 
it's, now, a question of whether or not it's capable of producing numerical values close enough to Simon
Newcomb's numerical value of 42.9  arc-seconds per century for the anomalous advance of Mercury's 
perihelion. 

However, before any attempt at calculating the aforementioned numerical value, it's, first and foremost,
imperative, in this regard, to find out by how much exactly the apparent orbital time of the near-side 
half of Mercury's orbit is longer than its apparent orbital time of the far-side half of the same orbit.
   



2.   The Two Apparent Periods of Mercury's Orbit:

As already pointed out, in the moving reference frame of the earth, the straight line between the point 
of maximum velocity of approach, at which the planet Mercury is approaching directly the earth, and 
the point of maximum velocity of recession, at which the planet Mercury is receding directly from the 
earth, divides the orbit of the planet Mercury into two equals parts: The near-side half and the far-side 
half of Mercury's orbit.

If  P  is the actual orbital period of the planet Mercury, throughout its entire orbit around the barycenter 
of the solar system, then the actual orbital time of the near-side half of Mercury's orbit is ½P, and the 
actual orbital time of the far-side half of the same orbit is ½P  as well.    

A.   The Apparent Orbital Period of the Near-Side Half:

The near-side half of Mercury's orbit starts from the point of maximum velocity of approach and ends 
at the point of maximum velocity of recession, as observed in the reference frame of the moving earth.

Let  v  denote the orbital velocity of Mercury.

Since sunlight is reflected from the planet Mercury, its incident velocity  c, as computed in accordance 
with the ballistic assumption, is increased, upon reflection, by twice the orbital velocity of Mercury;  
i.e., 2v,  at the point of maximum velocity of approach:

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Mercury, at the point of 
maximum velocity of approach.

At the point of maximum velocity of recession, by contrast, the incident velocity of sunlight is 
decreased, upon reflection, by twice the orbital velocity of  the planet Mercury:

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Mercury, at the point of 
maximum velocity of recession..

2c c v¢ = +

2c c v¢ = -



And therefore, if  d  is the distance between the planet Mercury and the observers on Earth, then the 
total travel time of sunlight, reflected from Mercury at the point of maximum velocity of approach, can 
be calculated, in accordance with the ballistic assumption, by using the following equation:

where  tA  is the total travel time of reflected sunlight from the planet Mercury, at the point of maximum
velocity of approach, to the observers on the earth.  

And  in the same way, the total travel time of sunlight, reflected from Mercury at the point of maximum
velocity of recession, can be obtained by using this equation:

where  tR  is the total travel time of reflected sunlight, from the planet Mercury, at the point of 
maximum velocity of recession, to the planet earth.  

And subsequently, the apparent orbital time of the near-side half of Mercury's orbit, Tnr, is given by the 
following equation:

where  P  is the actual orbital period of the planet Mercury.

It follows, therefore, that the apparent orbital period of the near-side half of Mercury's orbit, Pnr, can be 
calculated in accordance with this formula:
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where  d  is the distance between the earth and the planet Mercury.

It should be pointed out, within this context, that, even though the number of all observable events of 
the near-side half of Mercury's orbit remains exactly the same regardless of whether the orbital period 
is apparent or actual, the duration of every event, in this half of the orbit, is longer during the apparent 
orbital period than the duration of the same event during the actual orbital period.  And that is because 
the former period is longer than the latter one.

 
B.  The Apparent Orbital Period of the Far-Side Half:

The far-side half of Mercury's orbit starts from the point of maximum velocity of  recession and ends at
the point of maximum velocity of approach, as observed from the moving reference frame of the earth.

Let  v  stand for the orbital velocity of Mercury.

Since sunlight is reflected from the planet Mercury, its incident velocity  c, as calculated on the basis of
the ballistic assumption, is decreased, upon reflection, by twice the orbital velocity of Mercury;  i.e., 2v,
at the point of maximum velocity of recession

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Mercury, at the point of 
maximum velocity of recession.

At the point of maximum velocity of approach, by comparison, the incident velocity of sunlight is 
increased, upon reflection, by twice the orbital velocity of  the planet Mercury:

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Mercury, at the point of 
maximum velocity of approach..

And consequently, if  d  is the distance between the planet Mercury and Earth, then the total travel time 
of sunlight, reflected from Mercury at the point of maximum velocity of recession, can be computed  
through the use of this equation:

2c c v¢ = -

2c c v¢ = +
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where  tR  is the total travel time of reflected sunlight, from the planet Mercury, at the point of 
maximum velocity of recession, to the planet earth.  

And similarly, the total travel time of sunlight, reflected from Mercury at the point of maximum 
velocity of approach, can be obtained by using this equation:

where  tA  is the total travel time of reflected sunlight, from the planet Mercury, at the point of 
maximum velocity of approach, to observers on the earth.  

And accordingly, the apparent orbital time of the far-side half of Mercury's orbit, Tfr, is given by the 
following equation:

where  P  is the actual orbital period of the planet Mercury.

And it follows, therefore, that the apparent orbital period of the far-side half of Mercury's orbit, Pnr, can 
be calculated in accordance with this formula:

where  d  is the distance between the earth and the planet Mercury.

Once again, it should be mentioned that, although the number of all observable events of the far-side 
half of Mercury's orbit remains the same, the duration of every event, in this half of the orbit, is 
necessarily shorter during the apparent orbital period than the duration of the same event during the 
actual orbital period.  And that is because the apparent period is shorter than the actual one.
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3.  The Ballistic Prediction of Le Verrier's Anomaly:

As mentioned earlier, in this discussion, Urbain Le Verrier deduced the anomalous advance of 
Mercury's perihelion from observational data gathered over several decades during Mercury's transits.

And since those transits occur only when the planet Mercury is in the near-side half of its orbit, their 
timing points and duration data can fit only in with this apparent orbital period of the near-side half of 
Mercury's orbit:
 

where  d  is the distance between the earth and the planet Mercury.

And because the apparent orbital period, into which the observations of Mercury's transits properly fit, 
is longer than the actual orbital period of the planet Mercury, Mercury's perihelion appears 
automatically to rotate anomalously in the same direction as that of the orbital revolution of the planet 
Mercury around the gravitational center of the solar system, by an amount of arc-seconds per orbital 
revolution directly proportional to a factor of  ΔP:

where  ΔP  is the time difference between the apparent orbital period and the actual period of Mercury.

And accordingly, the numerical value of the anomalous precession of Mercury's perihelion per century  
Δϕ, as computed on the basis of  the ballistic velocity of light in vacuum, can be obtained by using the 
following formula:

where  Nrev  is the number of orbital revolutions per year;  and  ω  is:
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and where  P  is the actual orbital period of the planet Mercury in hours; since the number of 3600  for 
converting degrees to seconds of arc and the number of 3600  for converting hours to seconds of time 
cancel each other out within the above numerical relation.

It follows, therefore, that if we insert the following observational data:

into the following equation:

we obtain, for the anomalous precession of Mercury's perihelion, this numerical value:

as calculated in accordance with the ballistic velocity of light in vacuum.

The above computed prediction of the anomalous advance of Mercury's perihelion, on the basis of the 
ballistic assumption, does not deviate significantly from Simon Newcomb's result of  43  seconds of arc
per century.  And it can be made much closer to the observed value by taking into account the 
eccentricity of Mercury's orbit and its inclination with respect to the plane of the earth's orbit.
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Furthermore, the value of the anomalous precession of Mercury's perihelion, according to the ballistic 
assumption, varies directly with the distance from the point of maximum velocity of approach and the 
point of maximum velocity of recession.  

For instance, at a distance of 1.524 AU, on the planet Mars, the anomalous advance of Mercury's 
perihelion has, as predicted on the basis of ballistic speed of light, the following numerical value:

 

and at a distance of  9.582 AU, on the planet Saturn:

and, of course, at a distance of 39.48 AU, on Pluto:

where  Δϕ  is the anomalous precession of Mercury's perihelion.

4.   The Two Apparent Periods of Venus' Orbit:

As in the case of the planet Mercury, in the moving reference frame of the earth, the straight line 
between the point of maximum approach, at which the planet Venus is approaching directly the earth, 
and the point of maximum recession, at which the planet Venus is receding directly from the earth, 
divides the orbit of the planet Venus into two halves: The near-side half and the far-side half.

If  P  is the actual orbital period of the planet Venus, throughout its entire orbit around the barycenter of
the solar system, then the actual orbital time of the near-side half of Venus' orbit is ½P,  and the actual 
orbital time of the far-side half of the same orbit is ½P.    

1.  The Apparent Orbital Period of the Near-Side Half:

67.99   arc-seconds per centuryfD =

427.45   arc-seconds per centuryfD =

1761.2   arc-seconds per centuryfD =



The near-side half of Venus' orbit starts from the point of maximum velocity of approach and ends at 
the point of maximum velocity of recession, as observed in the reference frame of the moving earth.

Let  v  denote the orbital velocity of the planet Venus.

Since sunlight is reflected from the planet Venus, its incident velocity  c, as computed in accordance 
with the ballistic assumption, has to be increased, upon reflection, by twice the orbital velocity of 
Venus;  i.e., 2v, at the point of maximum velocity of approach

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Venus.

At the point of maximum velocity of recession, by comparison, the incident velocity of sunlight is 
decreased, upon reflection, by twice the orbital velocity of the planet Venus:

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Venus, at the point of 
maximum velocity of recession..

And therefore, if  d  is the distance between the planet Venus and the observers on Earth, then the total 
travel time of sunlight, reflected from the planet Venus at the point of maximum velocity approach, can
be calculated by using this equation:

where  tA  is the total travel time of reflected sunlight, from the planet Venus, at the point of maximum 
velocity of approach, to observers on the earth.  

And likewise, the total travel time of sunlight, reflected from Venus at the point of maximum velocity 
of recession, can be obtained through the use of the following equation:
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2c c v¢ = -
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where  tR  is the total travel time of reflected, sunlight from the planet Venus, at the point of maximum 
velocity of recession, to the planet earth.  

And subsequently, the apparent orbital time of the near-side half of Venus' orbit, Tnr, is given by the 
following equation:

where  P   is the actual orbital period of the planet Venus.

It follows, therefore, that the apparent orbital period of the near-side half of Venus' orbit, Pnr, can be 
calculated in accordance with this formula:

where  d  is the distance between the earth and the planet Venus.

2.  The Apparent Orbital Period of the Far-Side Half:

The far-side half of Venus' orbit starts from the point of maximum velocity of  recession and ends at the
point of maximum velocity of approach, as seen from the moving reference frame of the earth.

Let  v  be the orbital velocity of Venus.

Since sunlight is reflected from the planet Venus, its incident velocity  c, as calculated  on the basis of 
the ballistic assumption, is increased, upon reflection, by twice the orbital velocity of  the planet Venus;
i.e., 2v, at the point of maximum velocity of approach
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where  c'  is the velocity resultant of sunlight, upon reflection from the planet Venus.

By contrast, at the point of maximum velocity of recession, the incident velocity of sunlight is 
decreased, upon reflection, by twice the orbital velocity of  the planet Venus:

where  c'  is the velocity resultant of sunlight, upon reflection from the planet Venus, at the point of 
maximum velocity of recession..

And therefore, if  d  is the distance between the planet Venus and Earth, then the total travel time of 
sunlight, reflected from Venus at the point of maximum velocity of approach, can be computed through
the use of the following equation:

where  tA  is the total travel time of reflected sunlight from the planet Venus, at the point of maximum 
velocity of approach, to observers on the earth.  

And similarly, the total travel time of sunlight, reflected from the planet Venus at the point of maximum
velocity of recession, can be obtained by using this equation:

where  tR  is the total travel time of reflected sunlight, from the planet Venus, at the point of maximum 
velocity of recession, to the planet earth.  

And hence, the apparent orbital time of the far-side half of Venus' orbit, Tfr, is given by the following 
equation:
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2c c v¢ = -
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where  P   is the actual orbital period of the planet Venus.

And it follows, therefore, that the apparent orbital period of the far-side half of Venus' orbit, Pnr, can be 
calculated in accordance with this formula:

where  d  is the distance between the earth and the planet Venus.

5.  The Ballistic Prediction of the Orbital Anomaly of Venus:

Like Urbain Le Verrier's anomaly of Mercury's orbit, the anomalous advance of Venus' orbit has to be 
deduced from observations gathered in the near-side half of its orbit.

And consequently, the timing data of those observations can fit only in with the apparent orbital period 
of the near-side half of Venus' orbit, as given by this equation:
 

where  d  is the distance between the earth and the planet Venus.

And because the apparent orbital period, into which the timings of observational data properly fit, is 
longer than the actual orbital period of the planet Venus, its orbit must appear to rotate anomalously in 
the same direction as that of the orbital revolution of the planet Venus around the barycenter of the 
solar system, by an amount of arc-seconds per revolution directly proportional to a factor of  ΔP:
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where  ΔP  is the time difference between the apparent orbital period and the actual period of Venus.

And thus, the numerical value of the anomalous precession of Venus' orbit per century  Δϕ, as 
computed on the basis of  the ballistic assumption, can be obtained by using this formula:

where  Nrev  is the number of orbital revolutions per year;  and  ω  is:

 

and where  P  is actual orbital period of the planet Venus in hours.

And it follows, therefore, that if we insert the following observational data:

into the following equation:
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we obtain, for the anomalous precession of Venus' orbit, this numerical value:

as calculated in accordance with the assumption of ballistic velocity of light.

The numerical value of the anomalous precession of Venus' orbit, as computed above on the 
assumption of ballistic speed of light in vacuum, is much higher than the numerical value of  (-0.05 ± 
0.25 arc-seconds per century) initially obtained by A. Einstein  [Ref.  #3];  but it's still less than the 
currently recalculated value of  (8.6 arc-seconds per century)  within the framework of Einstein's 
general theory of relativity as well as the observed value of  (8.4 ± 4.8  arc-seconds per century)  [Ref. 
#5.a].  However, the observations of Venus, in this regard, are more difficult and lower-grade than 
those of the planet Mercury.  And therefore, the result of  (5.077 arc-seconds per century), as calculated
in accordance with the ballistic assumption, should be deemed acceptable and theoretically reasonable. 

And furthermore, according to the ballistic assumption, the value of the anomalous precession of 
Venus' orbit varies linearly in direct proportion to the distance from the point of maximum velocity of 
approach and the point of maximum velocity of recession:  

At a distance of 5.203 AU, from the planet Jupiter, for example, the orbital shift of Venus is predicted, 
on the basis of ballistic speed of light, to have this numerical value:

and at a distance of  19.2 AU, on the planet Uranus:

and at a distance of 30.05 AU, on the planet Neptune:

where  Δϕ  is  the anomalous precession of Venus' orbit.
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6.  The Ballistic Prediction of the Orbital Anomaly of Earth:

In accordance with the assumption of ballistic speed of light, no anomalous shift of Earth's orbit can be 
observed or deduced from transit data or any other observational data by observers located anywhere in
the reference frame of the earth;  i.e., in this special case:

where  Δϕ  is the anomalous precession of Earth's orbit.

Nonetheless, if the earth is seen, for example, from the reference frame of the planet Mars, then the 
earth's orbit, as predicted on the basis of the same ballistic assumption, must appear to advance, in an 
anomalous manner, by a certain amount in the same direction of its orbital revolution around the 
gravitational center of the solar system.

Just as in the case of the transit observations of Mercury in the reference frame of the earth, transit data 
gathered  in the reference frame of Mars with regard to the earth's orbit, ought to fit in properly with the
apparent orbital period of the near-side half of Earth's orbit with respect Mars:
 

 

where  d  is the distance between the earth and the planet Mars.

And since the apparent orbital period, into which the timing points of such observational data correctly 
fit, is longer than the actual orbital period of the planet Earth, its orbit must appear to rotate 
anomalously in the same direction as that of the orbital revolution of the planet Earth around the 
barycenter center of the solar system, by an amount of arc-seconds per  orbital revolution directly 
proportional to a factor of  ΔP:
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where  ΔP  is the time difference between the apparent orbital period and the actual period of Earth.

And correspondingly, the numerical value of the anomalous precession of Earth's orbit per century  Δϕ, 
as computed on the basis of the ballistic assumption, can be obtained by using this formula:

where  Nrev  is the number of orbital revolutions per year;  and  ω  is:

 

and where  P  is actual orbital period of the planet Earth in hours; since, within the above numerical 
relation, the number of 3600  for converting degrees to seconds of arc and the number of 3600  for 
converting hours to seconds of time cancel each other out.

And it follows, therefore, that if we insert the following observational data:

into the following equation:
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we obtain, for the anomalous precession of Earth's orbit, this numerical value:

as calculated in accordance with the ballistic assumption in the reference frame of Mars.

In addition, according to the ballistic assumption, the value of the anomalous precession of Earth's orbit
varies linearly in direct proportion to the distance from the point of maximum velocity of approach and 
the point of maximum velocity of recession:  

At a distance of 9.582 AU, on the planet Saturn, for instance, the orbital shift of Earth is predicted, on 
the basis of ballistic speed of light, to have this numerical value:

and at a distance of  19.2 AU, on the planet Uranus:

and at a distance of 39.48 AU, on Pluto:

where  Δϕ  is the anomalous precession of Earth's orbit.

7.  The Ballistic Predictions of Orbital Shifts of Outer Planets:

The orbits of outer planets, as seen from Earth, can show no Urbain Le Verrier's anomaly, in 
accordance of the assumption of ballistic velocity of light in vacuum;  because those outer planets do 
not have any kind of any transit data to begin with.

Nevertheless,  as in the case of the inner planets, in the moving reference frame of the earth, the straight
line between the point of maximum approach, at which an outer planet is approaching directly the 
earth, and the point of maximum recession, at which the same outer planet is receding directly from the

2.48   arc-seconds per centuryfD =

15.59   arc-seconds per centuryfD =

31.24   arc-seconds per centuryfD =

64.25   arc-seconds per centuryfD =



earth, divides the orbit of that planet into two equals parts:  The near-side part and the far-side part.

Now, if we assume that  P  is the actual orbital period of an outer planet, throughout its entire orbit 
around the barycenter of the solar system, then the actual orbital time of the near-side half of the outer 
planet's orbit is ½P,  and the actual orbital time of the far-side half of the same orbit is ½P.    

I.  The Apparent Orbital Period of the Near-Side Half:

The near-side half of an outer planet's orbit starts from the point of maximum velocity of approach and 
ends at the point of maximum velocity of recession, as observed in the reference frame of the moving 
earth.

Let's assume that  v  denotes the orbital velocity of an outer planet.

Since sunlight is reflected from an outer planet, its incident velocity  c, as computed in accordance with
the ballistic assumption, is increased, upon reflection, by twice the orbital velocity of the outer planet, 
in question;  i.e., 2v, at the point of maximum velocity of approach

where  c'  is the velocity resultant of sunlight, upon reflection from an outer planet .

Conversely, at the point of maximum velocity of recession, the incident velocity of sunlight is 
decreased, upon reflection, by twice the orbital velocity of an outer planet:

where  c'  is the velocity resultant of sunlight, upon reflection from an outer planet, at the point of 
maximum velocity of recession..

And as a result, if  d  is the distance between an planet outer and the observer on the earth, then the 
total travel time of sunlight, reflected from that outer planet at the point of maximum velocity of 
approach, can be calculated by this equation:

2c c v¢ = +

2c c v¢ = -



where  tA  is the total travel time of reflected sunlight, from an outer planet, at the point of maximum 
velocity of approach, to observers on the earth.  

And in a similar manner, the total travel time of sunlight, reflected from an outer planet at the point of 
maximum velocity recession, can be obtained by using this equation:

where  tR   is the total travel time of reflected sunlight, from an outer planet, at the point of maximum 
velocity of recession, to the planet earth.  

Subsequently, the apparent orbital time of the near-side half of an outer planet's orbit, Tnr, is always 
given by the following equation:

where  P   is the actual orbital period of an outer planet.

It follows, therefore, that the apparent orbital period of the near-side half of an outer planet's orbit, Pnr, 
can be calculated in accordance with this formula:

where d  is the distance between the earth and the outer planet under consideration.

II.  The Apparent Orbital Period of the Far-Side Half:
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The far-side half of an outer planet's orbit starts from the point of maximum velocity of  recession and 
ends at the point of maximum velocity of approach, as seen from the moving reference frame of the 
earth.

Let, once again,  v  stand for the orbital velocity of an outer planet.

Because sunlight is reflected from an outer planet, its incident velocity  c, as calculated in on the basis 
of the ballistic assumption, is increased, upon reflection, by twice the orbital velocity of that outer 
planet;  i.e., 2v, at the point of maximum velocity of approach

where  c'  is the velocity resultant of sunlight, upon reflection from an outer planet.

By contrast,, at the point of maximum velocity of recession, the incident velocity of sunlight is 
decreased, upon reflection, by twice the orbital velocity of an outer planet:

where  c'  is the velocity resultant of sunlight, upon reflection from an outer planet, at the point of 
maximum velocity of recession..

And therefore, if it's assumed that  d  is the distance between an outer planet and Earth, then the total 
travel time of sunlight, reflected from that outer planet at the point of maximum velocity of approach, 
can be computed through the use of this equation:

where  tA  is the total travel time of reflected sunlight, from an outer planet, at the point of maximum 
velocity of approach, to observers on the earth.  

Similarly, the total travel time of sunlight, reflected from an outer planet at the point of maximum 
velocity of recession, can be obtained by using this equation:

2c c v¢ = +

2c c v¢ = -
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where  tR  is the total travel time of reflected sunlight, from an outer planet, at the point of maximum 
velocity of recession, to the planet earth.  

And accordingly, the apparent orbital time of the far-side half of an outer planet's orbit, Tfr, is given by 
the following equation:

where  P  is the actual orbital period of an outer planet.

And it follows, therefore, that the apparent orbital period of the far-side half of an outer planet's orbit, 
Pnr, can be calculated in accordance with this formula:

where  d  is the distance between the earth and an outer planet.

III.   The Ballistic Precession of Outer Planets' Orbits:

As in the case of inner planets, observations of any outer planet, in the near-side half of its orbit, are 
consistent with a longer apparent orbital period;  while observations of the same outer planet, in the far-
side half of its orbit, are consistent with a shorter apparent period than the actual orbital period of that 
outer planet.

And as a result, the true planetary orbit appears to rotate, by a certain amount, in the direction of its 
orbital revolution, based on observations gathered from the near-side half of the orbit;  and in the 
opposite direction, as deduced from observations gathered from the far-side half of the same orbit.

However, the calculated amounts of anomalous orbital shifts, in the case of outer planets, are 
considerably minute for two main reasons:
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• The values of orbital velocity  v,  for outer planets, decreases with increasing distance from the 
barycenter of the solar system.

• The angle θ  between the orbital velocity vector and the observer's line of sight approaches 90o 
with increasing distance from the barycenter of the solar system.  

And consequently, the values of maximum velocity of approach and maximum velocity of recession 
approach  0  as the orbital velocity gets smaller, and the angle θ  approaches  90o  with increasing 
distance from the barycenter of the solar system.

Nevertheless, it is always possible, on the ballistic assumption, to obtain the time difference between 
the apparent orbital period and the actual period of any outer planet, through the use of this equation:

where  d  the distance between the earth and an outer planet, as defined by this relation:

in which  de   and   dp  denote the distance of the earth and the distance of an outer planet from the 
barycenter of the solar system;  and both form the two sides of a right triangle with the barycenter of 
the solar system at the time maximum orbital velocity of approach and maximum orbital velocity of 
recession, respectively.

Also the velocity variable  v,  in the above equation, is defined in terms of the angle  θ   within the same
right triangle, in accordance with the following formula:

in which  vp  is the mean orbital velocity of an outer planet;  and  θ   is the angle between the orbital 
velocity vector of an outer planet and the line of sight of an observer on Earth.

And since maximum velocities of approach and recession occur only when the earth and an outer 
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planet form a right triangle with the barycenter of the solar system, the value of  cosθ, in the above 
equation, is readily computed by using this trigonometric relation:

 

where  de   is the distance of the earth  from the gravitational center of the solar system;  and   dp  is the 
distance of an outer planet from the same gravitational center;  at the time of maximum velocity of 
approach and the time of maximum velocity of recession, respectively.

And, therefore,  the above time-difference equation can be rewritten in this more convenient form:

  
in which   de   has always this numerical value:

where  AU  stands for the astronomical unit.

And consequently, the numerical value of the anomalous precession of an outer planet's orbit in 
seconds of arc per century  Δϕ,  as computed on the basis of  the ballistic velocity of light in vacuum, 
can be obtained by using the following equation:

where  Nrev  is the number of an outer planet's orbital revolutions per year;  and  ω  is the angular 
velocity of an outer planet in arc-seconds per second.
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And it follows, correspondingly, that, in the case of  Mars (the closest outer planet to Earth), if we 
insert the following observational data:

into the following formula:

we obtain, for the anomalous precession of Mars' orbit  Δϕ, this numerical value:

as calculated in accordance with the ballistic assumption.

The calculated values of anomalous precession, for the rest of outer planets,  Δϕ, on the basis of 
ballistic velocity of light in vacuum, are listed in the last column of the following table: 
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Planet Period  p (s) vpcosθ (ms-1) Distance  d  (m) Nrev  (rev/yr) ω (arc-s/s) Δϕ  ("/cen.)

Jupiter 374335689.6 2464.98 792603472835.4 0.0843 0.00346 0.005072

Saturn 929596608 994.71 1441231849108.1 0.0339 0.00139 6.013 x 10-4

Uranus 2651218560 353.69 2876172256906.7 0.0119 4.89 x 10-4 5.269 x 10-5

Neptune 5200329600 180.6 4497904475047.9 0.0061 2.49 x 10-4 1.098 x 10-5

Pluto 7824384000 118.26 5908018234677.8 0.0040 1.66 x 10-4 4.129 x 10-6

Table:      Ballistic Precession of Outer Planets

With regard to the calculated predictions of planetary precession, on the basis of ballistic velocity of 
light in vacuum, the following points should be pointed out explicitly and made clear:

• The numerical values of ballistic precession, as computed in the reference of the earth, are 
significant only in the case of the two inner planets: Mercury and Venus.

• Although it's possible that the inclusion of orbital eccentricity and axial velocity, in more 
precise calculations, may, well, increase its numerical values slightly, the computed ballistic 
precession of outer planets is generally very tiny and insignificant.

• One of the two most striking aspects of ballistic precession, as demonstrated in this discussion, 
is the linear increase of its numerical values with increasing distance between the reference 
frame of the observer and the barycenter of the solar system or the barycenter of any other 
system in general. 

• The other remarkable aspect of ballistic precession, as in the case of the solar system under 
discussion, is the counterclockwise precession of the near-side half of a planetary orbit by a 
certain amount, and the clockwise precession of the far-side half of the same planetary orbit by 
exactly the same amount.

• An integral part of ballistic precession, which was the main topic of debate between W. de Sitter
and M. la Rosa during the early decades of the 20th Century, is the increasing apparent orbital 
time of the near-side half of an orbit and the decreasing apparent orbital time of the far-side half
of the same orbit with increasing distance between the observer and the binary system in 
question  [P.  #A].  However, it seems clear, from their published papers on binary stars, that 
neither W. de Sitter nor M. la Rosa noticed that the sum of these two apparent orbital times is 
always equal to the actual orbital period of the celestial body under consideration.  

• What is expected to happen after the apparent orbital time of the near-side half of an orbit 
becomes equal to the whole actual orbital period, and the apparent orbital time of the far-side 
half of the same orbit becomes equal to nil?  As far as measuring observers are concerned, the 
the ballistic precession of the orbit, in question, should appear to them to start numerically from 
an absolute value of zero, and then to increase directly with distance as before.  But this time 



around, the ballistic precession is in the opposite direction;  and the apparent orbital time of the 
far-side half of the orbit increases, and the apparent orbital time of the near-side half of the 
same orbit decreases with increasing distance between the observer and the observed system. 
But the sum of these two apparent orbital times remains always equal to the actual orbital 
period of the celestial body under observation. 

8.  Concluding Remarks:

Is it possible, in accordance with the assumption of ballistic speed of light in vacuum, to carry out 
calculations of anomalous precession, with regard to planetary perihelia, in the reference frame, in 
which the barycenter of the solar system is at rest?

In principle, it is possible to perform such calculations; but their numerical values ought to be nil or 
very close to nil;  since  those planets, by their very orbital arrangements, have little or no amount of 
radial velocity component towards or away from their collective gravitational center.

And the same should apply, of course, to the orbital motion of the Moon around the barycenter of the 
Earth-Moon system, which also exhibits little or no velocity of approach or recession with respect to 
the common gravitational center of the earth and the Moon. 
 
There is one more relevant question related to the anomalous precession of a celestial body that belongs
entirely to a different category of its own:

Does the orbit of the Sun, around the barycenter of the solar system, show any measurable amount of 
ballistic precession, as observed in the moving reference frame of the earth?

Theoretically, the orbit of the Sun around the gravitational center of the solar system must have, in the 
ballistic calculations, at least, a non-zero value of anomalous orbital advance;  but it's highly unlikely to
be measured under any conceivable circumstances, because its computed value ought to be extremely 
tiny for two main reasons:

1.  The mean value of the Sun's orbital velocity, around the barycenter of the solar system, is very
small compared to the orbital speeds of the planets:

where  vs  is the mean orbital velocity of the Sun around the barycenter of the solar system.

2. Because the Sun is an actual emitter of sunlight, and not a reflector of sunlight as in the case of
every planet, the ballistic velocity of light is increased only by 1v,  not by 2v  as in the case of 
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an approaching planet, during maximum velocity of approach;  and it's decreased by 1v, and 
not by 2v  as in the case of a receding planet during maximum velocity of recession.  

And therefore, all things being equal, the anomalous precession of the emitting Sun's orbit is always 
less by a factor of two than that of a reflecting planet's orbit;  i.e., 

where  Δϕ  is the anomalous precession of the Sun's orbit;  and  ds  is the distance of the Sun's center of 
mass from the gravitational center of the solar system:

 

For the above two major reasons therefore, the anomalous precession of the Sun's orbit, around the 
barycenter of the solar system, does not exceed, under any conceivable circumstances, by a significant 
amount the following numerical value: 

where  Δϕ  is the anomalous precession of the Sun's orbit around the barycenter of the solar system.

Now, once again, how exactly did the ballistic precession of Mercury's perihelion make a renowned 
and skilled specialist in celestial mechanics, like Urbain Le Verrier, think that there must be an inner 
planet named 'Vulcan' between Mercury and the Sun?

Well, at first glance, the answer, to the above question, seems, even without taking the trouble to check 
for any historical evidence at all, straightforward and easy:  

• Ballistic precession makes the interval of time spent by the planet Mercury, in the near-side half
of its orbit, appear a bit longer than actually is;  i.e., longer than its actual orbital time by an 
amount  ΔT  that varies directly with distance as determined by this formula:
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where  d   is the distance between Earth and Mercury. 

And that, by logical necessity, means that the duration of every physical event related to 
Mercury, in this part of its orbit, appears longer than what actually is.  And hence, the timing 
points of transit events such as ingress and egress, as done in the earth's frame of reference, 
imply an apparent orbital period, which is longer than the actual orbital period by an amount of 
time:

 

where  ΔP  is the time difference between the apparent orbital period and the actual period of 
the planet Mercury.

• And accordingly, Urbain Le Verrier was bound to uncover a major discrepancy: 

If the timing points of Mercury's transit are projected mathematically one hundred years into the
future, they converge collectively, as expected, on a specific orientation of Mercury's orbit in 
space.  But, at the same time, if a sufficient sample of recorded Mercury's transits are 
statistically analyzed, they collectively converge on a different orientation of Mercury's orbit in 
space, which is, as a rule of thumb, always a head of the mathematically predicted orientation 
by an exact amount of seconds of arc in accordance with this relation:  

where  Δϕ  is the anomalous precession of Mercury's orbit. 

Why is that?  Because the former is based upon transit data measured during the longer 
apparent time of the near-side half of Mercury's orbit. While, by contrast, the representative 
sample of Mercury's transits corresponds always with the shorter actual time of the near-side 
half of the same orbit.  
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But exactly how?  The planet Mercury, as observed in the reference of the earth, takes one 
actual orbital period to return to the same point of its orbit, because the ballistic apparent time 
of the near-side half and the apparent time of the far-side half of Mercury's orbit balance each 
other;  i.e., the ballistic precession of planetary orbits is not secular.  And therefore, the 
representative sample of Mercury's transits must follow the actual orbital period of Mercury, 
and not the apparent orbital time of the near-side half of its orbit.  

• And subsequently, we can easily conclude that Urbain Le Verrier had no other choice but to 
assume the existence of the hypothetical planet Vulcan, in order to get rid of the aforementioned
discrepancy between the two orientations of the planet Mercury in space.

And that is it.

 
Finally, it should be pointed out, at the end of this discussion, that the treatment of the anomalous 
precession of planetary perihelia, on the basis of ballistic velocity of light, is much easier to carry out;  
and certainly it has a wider scope and range of applicability than those of all of the proposed theoretical
schemes that have been proposed so far, in the published literature, for dealing with this particular 
phenomenon on the basis of different assumptions. 

Obviously, the proposition of ballistic velocity of light in vacuum is a seemingly fundamental and 
somewhat drastic solution for the 43-arc-second-per-century problem of  Urbain Le Verrier's 200-year-
plus anomaly. 

But, at the same time, it should be acknowledged, in this regard, that the ballistic-velocity-of-light 
proposition is, by no means, more  visibly radical and extravagant than the modification of the square 
law of gravity by S. Newcomb, or curving abstract space and abstract time, altogether at once,  by A. 
Einstein, to mention just a few drastic examples on this particularly highly inspiring topic. 

Besides,  the proposition of ballistic velocity of light seems to have a distinctly Copernican aura 
attached to it.  In other words, the modern situation of a universally constant speed of light versus a 
regularly changing ballistic speed  appears, on the face of it, to be eerily reminiscent of the old situation
of a stationary Earth versus a moving Earth, during the middle ages and antiquity.  

And furthermore, the notion of ballistic velocity of light in vacuum is not merely theoretical;  and as a 
matter of fact, there is, actually, a substantial number of supporting experiments in its favor, the most 
important of which is the well-known Michelson-Morley experiment. 

Certainly, one may, as well, explain away the null result of the famous Michelson-Morley experiment 
by using other alternatives.  But as soon as one realizes that the notion of ballistic velocity of light 
explains, in a satisfactory manner, the reported result of that experiment, Occam's razor, naturally, will 
do away with many of those alternative interpretations in no uncertain terms and in no time at all. 

In any case, it is not unrecommended, from any given scientific perspective, to seriously consider and 
thoroughly investigate all theoretically viable possibilities, within contexts like the current one.  And 
surely, it wouldn't make Urbain Le Verrier's famous anomaly of Mercury's perihelion obsolete or less 
important to have one more new explanation added to the long list of its published interpretations.   
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