New physics and the microcosm-macrocosm concept

Edgars Alksnis
edgars.alksnis@gmail.com
Fax. +371 67464072
VEF-Baloži 968/969, Olaines pag., LV-2127, Latvia

Looking for a mechanical explanation of the stability of atom

Keywords: macrocosm and microcosm, stability of nucleus, classical field, spin field, hidden variables, island of stability


As we recently proposed a solution for stability of solar system (Alksnis, 2012), it was intriguing to try to find out whether we can understand atom in a similar way.

Inability to explain the entire universe with equations of gravity and electromagnetism historically had led to theories of uncertainty for macroworld and microworld. The mathematical solution of phenomena still seems to be more important that a real (physical) one (see for example: Gaete et al, 2011, cf.Mathis1).

Our suggestions:

1. Particles emit fields (cf. de Broglie, 1925). Thus we can understand the results of a double slit experiment with electrons (similarly as proposed by Mathis 2)
as an effect of interaction of matter-irradiated fields from the shield and from electrons (Fig. 1).

Fig. 1. Source: http://spot.colorado.edu/~cleland/articles/double-slit_experiment.pdf
(We can understand „bending of light near the Sun” phenomenon (cf. Mathis 2) in the same way.
Similar obsession with waves in radioastronomy had lead to wrong conceptions like the Big Bang).

2. As the double slit experiment has been characterised as the heart for quantum theory by Feynman (Leighton and Sands, 1965), we can consider this „heart” in arrythmia after such explanations, threatening life of the entire “spooky” quantum body.
3. Roughly speaking, if we look at the universe, in which only gravity and electromagnetism act, there is too much attraction in celestial mechanics and too much repulsion/attraction in microworld to explain visible stability of both.

4. As stated by many authors, physical laws for microworld must be the same as for macroworld. Thus we can ignore speculations like strong forces (Cf. Mathis 4-6) and return to the „hidden variables” concept. (As stated by many, uncertainty of position of particles pertain to experiment possibilities, not to reality).

5. For macroworld, the new „hidden variables” we propose are 1) physical field, which is irradiated from matter and acts inversely to the cube of distance (cf. Mathis 7, 8) and 2) physical field which is emanated from turbular moving liquids like Earth’s mantle, the Sun or Jovian planets and acts inversely to the square of distance and is not able to free penetrate matter (see the list of similar ideas by Nachalov and Sokolov).

6. Thus we can, for example, understand hidden celestial influences to living species as pictured by John Dee (1591) (Fig.2). The strongest 24.8 hour and 29, 53 days short-therm influence to nature comes from the Moon (Endres and Schad, 2003) - it is placed on top. Next is the hidden diurnal 27-day seasonal and annual influence from the Sun (Litynska 1984, Farbridge and Leatherland, 1987a, Shnoll 1998). Then 4 Earth’s elements, which are influenced both by the Moon and the Sun. Finally - fire can be understood as a factor, which is produced by Earth’s mantle’s turbulence (detectable with magnetometers on geological faults and „meteorite” craters).

7. Physical factors, whose influence is not measurable in the macroworld, can be highly important in the microworld.

8. Besides known and new physics, proposed above, in microworld we must focus on such points:

8.1. The force of gravity in microworld may be seriously underestimated (Mathis 9),

8.2. There can be interactions, caused by rotation and self rotation of neutral particles,

8.3. There can be interactions, caused by rotation and self rotation of charged particles (cf. Krisch, 1979).
8.4. Interactions with ether.

We have records of many experiments with gyroscopes and “torsion field” generators, which hopefully allows us to get the initial picture - how this all can work in microworld.

9. Author has been told that outside of hard experimental facts like chemical valence, radioactive stability of atoms and nuclear reactions, data from spectroscopy and particle accelerators there are a lot of speculations in nuclear physics (cf. Mathis 10).

To get more solid ground, we can use three phenomena: 1) list of unstable nucleus, 2) number of electrons in energetic shells, and 3) nuclear fission reactions (which proceed far from random mode).

Until we do not understand the mechanics of the microworld, a search for an “island of stability” between large atoms is simply a waste of taxpayer’s money.

Acknowledgement

We are thankful to Mag. Phys Peteris Luckans for discussion.

References

Chizhevsky A. (1924) Physical Factors of the Historical Process. Kaluga, Russia
Dee J. (1591) Monas Hieroglyphica. J. Wechel & P. Fischer, Frankfort, Germany.


Nachalov Yu, Sokolov A. Experimental investigation of new long-range actions.

Mathis M. 1 Death by Mathematics. Internet.
Mathis M. 2. The Double Slit Experiment. Internet.
Mathis M. 5. More problems with the strong force. Internet.
Mathis M. 6. The electromagnetic field (and the strong force). Internet.
Mathis M. 7. The trouble with tides. Internet. (4 papers in total).
Mathis M. 8. The cosmological constant is the charge field. Internet.
Mathis M. 9. Gravity at the quantum level. Internet.
Mathis M. 10. How the elements are built. Internet. (Some 11 papers in total)
Tamrazyan G. (1968) Principal regularities in the distribution of major earthquakes relative to solar and lunar tides and other cosmic forces. Icarus 9, 574-592.